
Espresso: Brewing Java For More Non-Volatility

with Non-volatile Memory

Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo Chen, Binyu Zang, Haibing Guan
Shanghai Key Laboratory of Scalable Computing and Systems

Institute of Parallel and Distributed Systems

Shanghai Jiao Tong University

Abstract

Fast, byte-addressable non-volatile memory (NVM) embraces

both near-DRAM latency and disk-like persistence, which

has generated considerable interests to revolutionize system

software stack and programming models. However, it is less

understood how NVM can be combined with managed run-

time like Java virtual machine (JVM) to ease persistence

management. This paper proposes Espresso1, a holistic ex-

tension to Java and its runtime, to enable Java programmers

to exploit NVM for persistence management with high per-

formance. Espresso first provides a general persistent heap

design called Persistent Java Heap (PJH) to manage persis-

tent data as normal Java objects. The heap is then strength-

ened with a recoverable mechanism to provide crash consis-

tency for heap metadata. Espresso further provides a new

abstraction called Persistent Java Object (PJO) to provide

an easy-to-use but safe persistence programming model for

programmers to persist application data. Evaluation confirms

that Espresso significantly outperforms state-of-art NVM sup-

port for Java (i.e., JPA and PCJ) while being compatible to

data structures in existing Java programs.

CCS Concepts • Hardware → Non-volatile memory; •

Software and its engineering → Runtime environments;

1Espresso coffee contains more non-volatile chemicals (such as caffeine);

we use it as an analog to our work where data becomes more non-volatile

This work is supported in part by China National Natural Science Founda-

tion (No. 61672345) and National Key Research & Development Program

of China (No. 2016YFB1000104). Corresponding author: Haibo Chen (hai-

bochen@sjtu.edu.cn).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00

h�ps://doi.org/10.1145/3173162.3173201

Keywords Non-Volatile Memory, Crash Consistency, Java

Virtual Machine

ACM Reference Format:

Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo Chen, Binyu

Zang, Haibing Guan. 2018. Espresso: Brewing Java For More Non-

Volatility with Non-volatile Memory. In Proceedings of ASPLOS

’18: Architectural Support for Programming Languages and Oper-

ating Systems (ASPLOS ’18). ACM, New York, NY, USA, 14 pages.

h�ps://doi.org/10.1145/3173162.3173201

1 Introduction

Due to promising features like non-volatility, byte-

addressability and close-to-DRAM speed, emerging

non-volatile memories (NVM) are projected to revolutionize

the memory hierarchy in the near future. In fact, battery-

backed non-volatile DIMM (NVDIMM) [30] has been

available to the market for years. With the official release

of Intel and Micron’s 3D-Xpoint [17] to the market, it is

foreseeable to see NVM to be widely deployed soon.

While there have been considerable interests to leverage

NVM to boost the performance and ease the persistence

management for native code [8, 14, 16, 27, 29, 32, 38, 42],

how NVM can be exploited by high-level programming lan-

guages with managed runtime like Java is less understood.

Despite their attracting features such as automatic mem-

ory management, portability and productivity, the additional

layer of abstraction brought by the language virtual machine

(e.g., JVM) complicates the persistence management.

The mainstream persistent programming model lever-

ages a coarse-grained abstraction like Java Persistence API

(JPA) [9] to provide easy-to-use transactional APIs for pro-

grammers to persist their data. However, it does not con-

sider the emergence of NVM and creates unnecessary trans-

formation overhead between Java objects and native serial-

ized data. In contrast, the recent proposed Persistent Collec-

tions for Java (PCJ) [15] provides a fine-grained program-

ming model to enable users to manipulate persistent data at

the object level. However, it provides an independent type

system against the original one in Java, which is incompati-

ble with existing Java programs since it mandates the use of

the collections defined by itself. Furthermore, PCJ manages

persistent data as native objects on their own, which ends up

https://doi.org/10.1145/3173162.3173201
https://doi.org/10.1145/3173162.3173201

with poor performance2. Besides, these two approaches tar-

get different application scenarios and programmers cannot

uniformly use one approach to applications that have both

requirements.

This paper proposes Espresso, a unified persistence frame-

work that supports both fine-grained and coarse-grained per-

sistence management while being mostly compatible with

data structures in existing Java programs and notably boost

the performance in persistence management. Espresso pro-

vides Persistent Java Heap (PJH), an NVM-based heap to

seamlessly store persistent Java objects. PJH allows users to

manipulate persistent objects as if they were stored in a nor-

mal Java heap and thus requires no data structure changes.

To allocate data on PJH, Espresso provides a lightweight key-

word pnew to create Java objects in NVM.

PJH serves as an NVM-aware allocator, which should tol-

erate machine crashes to create a safe runtime environment

for programmers. Hence, PJH provides crash-consistent allo-

cation and deallocation (garbage collection), which guaran-

tee that the metadata of the heap is crash-consistent.

To further ease the programming for applications that re-

quire coarse-grained persistence, Espresso provides Persis-

tent Java Object (PJO), a new persistent programming ab-

straction atop PJH as a replacement of JPA for NVM. PJO

provides backward-compatibility by reusing the annotations

and transactional APIs in JPA, yet with additional optimiza-

tions to eliminate unnecessary overhead in the original JPA

to boost the performance.

We have implemented the design of PJH and PJO atop

OpenJDK 8. To confirm the effectiveness of our design, we

provide a set of evaluation against JPA and PCJ. The result

indicates that Espresso achieves up to 256.3x speedup com-

pared with PCJ for a set of microbenchmarks. Furthermore,

PJO can provide support for different kind of data types in

the JPAB benchmark, which gains up to 3.24x speedup over

the original JPA for the H2 database.

In summary, this paper makes the following contributions:

• A persistent Java heap design (PJH) that enables Java

programs to exploit NVM for persistence management

without massive reengineering.

• A new abstraction for persistent programming (PJO)

for simple and safe manipulation on persistent data ob-

jects.

• An implementation of PJH and PJO atop OpenJDK

and a set of evaluations that confirm its effectiveness.

The rest of our paper is organized as follows. Section 2

reviews two main approaches for persistence management

and discusses its deficiencies, which motivates the design

of Espresso. Section 3 introduces an overview of our PJH

and language extension to manipulate persistent data objects.

2The home page (https://github.com/pmem/pcj) of PCJ acknowledged that

“The breadth of persistent types is currently limited and the code is not

performance-optimized”.

Section 4 further describes our mechanism to guarantee the

crash consistency of PJH. Section 5 presents the abstraction

PJO together with an easy-to-use persistent programming

model for programmers who require safe ACID semantics.

We evaluate our design in section 6, discuss related work in

section 7 and finally conclude in section 8.

2 Background and Motivation

In this section, we briefly review two main approaches to per-

sistence management in Java, which provide coarse-grained

and fine-grained persistence accordingly. We show that both

approaches have some deficiencies in providing a compatible

and efficient way for persistence with respect to NVM.

2.1 Coarse-grained Persistence with JPA

Database is a very appealing application for NVM and has

been intensively studied by prior work [32, 40, 42, 45]. Many

databases [2] are written in Java due to the portability and

easy programming. For ease of persistent programming, such

databases usually provide a persistent layer to keep program-

mers away from the messy work on persistent data manage-

ment. This layer can be implemented according to Java of-

ficial specification (such as JDO [18] and JPA [9]) or a cus-

tomized one for different use cases. Overall, it mainly serves

data transformation between Java runtime and persistent data

storage. We choose JPA as an example in this paper since it

is commonly used and more recent than JDO.

JPA (also known as Java Persistent API) is a specifica-

tion officially offered by the Java community for persistence

programming, especially in relational database management

system (RDBMS). With JPA, programmers are allowed to de-

clare their own classes, sub-classes and even collections with

some annotations. JPA is responsible for data transformation

between Java applications and RDBMSes: it serves applica-

tions with objects while it communicates with RDBMSes via

the Java Database Connectivity (JDBC) interface. JPA also

provides the abstraction of ACID transactions for program-

mers, which guarantees that all updates related to persistent

data will be persisted after a transaction commits.

To understand the performance of JPA atop NVM, we

present a case study with DataNucleus [1], a widely-used

open-source implementation of JPA. The architecture is il-

lustrated in figure 1.

Person p;

em.persist(p);

INSERT INTO TABLE WHERE…

Query.execute();

EntityManager

JDBC

(Application)

(JPA Provider)

(DBMS)

Figure 1. The infrastructure of DataNucleus

DataNucleus requires all classes related to persistent data

to implement the Persistable interface. Programmers should

mark their classes with the annotation @persistable. Sup-

pose a programmer wants to declare a simple class Person

which contains two fields: id (Integer) and name (String),

she should write code similar to that shown in figure 2. Note

that we will use the Person class throughout the paper as

a running example. DataNucleus has provided a bytecode

instrumentor named enhancer to transparently transform ar-

bitrary classes annotated with @persistable into those with

Persistable interface implemented. Afterwards, the imple-

mentation of APIs required by Persistable interface will also

be automatically generated by the enhancer. The enhancer

will also insert some control fields (corresponding to data

fields that store user data) into Persistable objects and instru-

ment auxiliary methods (getId in this example) for ease of

management.

1 @persistable

2 public class Person {

3 // fields

4 private Integer id;

5 private String name;

6

7 // constructor

8 public Person(Integer id, String name) {

9 this.id = id;

10 this.name = name;

11 }

12

13 // an auxiliary method example

14 public Integer getId() {

15 return this.id;

16 }

17

18

19 }

Figure 2. The declaration for class Person under JPA

Unfortunately, the data layout in RDBMSes is not compat-

ible with that in Java objects. To persist user data, DataNu-

cleus needs to initiate a transformation phase to translate all

updates on them into SQL statements. It subsequently sends

the statements to the backend RDBMSes through JDBC to

update data in the persistent storage. Note that only SQL

statements are conveyed to DBMSes, so even RDBMSes

written in pure Java (like H2 [31]) in figure 1 can only update

databases with SQL instead of real data stored in objects.

Deficiencies of JPA on NVM. The transformation phase

in DataNucleus (JPA) induces significant overhead in over-

all execution. We test its retrieve operation using the JPA

Performance Benchmark (JPAB) [34]. Figure 3 illustrates a

breakdown of performance. The result indicates that the user-

oriented operations on the database only account for 24.0%.

In contrast, the transformation from objects to SQL state-

ments takes 41.9%. This indicates that the JPA incurs notable

performance overhead.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

fr
a
c
ti
o
n
 o

f
to

ta
l

Database
Transformation

Other

Figure 3. Breakdown for commit phase of DataNucleus

2.2 Fine-grained Persistence with PCJ

Persistent Collections for Java (PCJ [15]) by Intel is an active

project designed for Java programmers to store their data in

NVM. However, our study shows that PCJ has several defi-

ciencies due to its design. Other libraries like MDS [13] also

allows Java users to manipulate data within NVM with light-

weight Java bindings. However, they are mostly designed for

C/C++ programs, and they share similar problems with PCJ,

as shown below.

Separated type system. PCJ implements a new type sys-

tem based on a persistent type called PersistentObject, and

only objects whose type is a subtype of PersistentObject can

be stored in NVM. Users who want to use PCJ must extend

PersistentObject to implement their own types. Figure 4 illus-

trates the declaration of the Person class on PCJ3. The class

Person must first extend PersistentObject to fit PCJ. Further-

more, the type of id and name should be modified into Persis-

tentInteger and PersistentString respectively, both of which

are subtypes of PersistentObject. Hence, using PCJ mandates

a non-trivial reengineering to transform existing data struc-

tures to a form supported by PCJ.

1 public class Person extends PersistentObject {

2 // fields

3 private PersistentInteger id;

4 private PersistentString name;

5

6 // constructor

7 public Person(Integer id, String name) {

8 this.id = new PersistentInteger(id.intValue());

9 this.name = new PersistentString(name);

10 }

11

12 // a method example

13 public Integer getId() {

14 return this.id.intValue();

15 }

16

17

18 }

Figure 4. The declaration for a simple class Person in PCJ

3The original declaration of Person is much more complex with a bunch of

static variables and helper methods. We have simplified the declaration for

ease of understanding.

Off-heap data management. Due to the lack of support

from Java, PCJ stores persistent data as native off-heap ob-

jects and manage them with the help of NVML [16], a C li-

brary providing ACID semantics for accessing data in NVM.

Therefore, PCJ has to define a special layout for native ob-

jects and handle synchronization and garbage collection all

by itself. This may lead to non-trivial management overhead

and suboptimal performance. We have implemented a sim-

ple example where we create 200,000 PersistentLong objects

(the equivalent of Java Long object in PCJ) and analyzed its

performance in figure 5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

fr
a
c
ti
o
n
 o

f
to

ta
l

Transaction
GC

Metadata
Allocation

Data
Other

Figure 5. Breakdown analysis for create operations in PCJ

First, the operation related to real data manipulation only

accounts for 1.8% over the whole execution time. In contrast,

operations related to metadata update contributes 36.8%,

most of which is caused by type information memorization.

In a normal Java heap, the type information operation only

contains a reference store, which is much simpler.

Furthermore, it takes 14.8% of the overall time to add

garbage collection related information to the newly created

object. PCJ needs this step because it is based on a reference

counting GC algorithm, which needs to update GC-related

information for each initialization. A normal Java heap lever-

ages more mature garbage collectors and takes less time to

bookkeep objects.

The last source of overhead comes from transactions,

which mainly contain synchronization primitives and log-

ging. This phase can also be optimized with the reserved bits

in object headers and transaction libraries written in Java, if

the objects are managed within Java heap.

In summary, most overhead in PCJ is caused by its off-

heap design, which could be notably optimized with an on-

heap design.

2.3 Requirements for Persistence Management in Java

From our study, we can see that there is currently no uni-

fied framework to provide persistence in Java. JPA is mostly

useful for databases that require coarse-grained persistence,

while PCJ mandates the use of its defined collections in or-

der to enjoy fine-grained persistence, which would incur non-

trivial porting efforts due to a shift of data structures. Besides,

both solutions suffer from notable performance overhead and

thus cannot fully exploit the performance benefit of NVM.

In light of this, we believe an ideal persistent framework

for Java should satisfy the following requirements.

• Unified persistence: The framework should support

both fine-grained and coarse-grained persistence so as

to support a wide range of applications.

• High performance: The framework should incur only

a small amount of overhead for persistence to harness

the performance advantage of NVM.

• Backward compatibility: The framework should not re-

quire major database changes so that existing applica-

tions can be ported with small effort to run atop it.

3 Persistent Java Heap

Being aware of above requirements, Espresso provides a uni-

fied framework for Java to support both fine-grained and

coarse-grained persistence management. It mainly contains

two parts: Persistent Java Heap (PJH) to manage persistent

objects in a fine-grained way, while Persistent Java Object

(PJO) helps programmers to manage persistent data with

handy interfaces. This section will mainly describe the de-

sign of PJH.

3.1 Overview

PJH is an extension to the original Java heap by adding an

additional persistent heap. We have built PJH in the Paral-

lel Scavenge Heap (PSHeap), the default heap implementa-

tion for OpenJDK. Figure 6 illustrates the modified layout of

PSHeap with PJH.

name table

metadata A B C

Klass segment

‘A’

‘B’

‘C’

‘root’

Persistent Space (PJH)

data heap

B D

F G

Meta Space Young Space Old Space

Figure 6. The Java heap layout with PJH

The original implementation of PSHeap contains two dif-

ferent spaces to store objects (circles in figure 6): Young

Space and Old Space. Objects will be initially created at

the Young Space and later promoted to the Old Space if

they have survived several collections. The garbage collector,

namely Parallel Scavenge Garbage Collector (PSGC), also

provides two different garbage collection algorithms. Young

GC only collects the garbage within the Young Space, which

happens frequently and finishes soon. In contrast, Old GC

collects the whole heap, which takes more time and happens

infrequently.

In Java, each object should hold a class pointer to its class-

related metadata, which is called a Klass in OpenJDK (rect-

angles with capital letters in figure 6). The class pointer is

stored in the header of an object, right next to the real data

fields (dashed lines in figure 6). JVM has maintained a Meta

Space to manage the Klasses. Klasses are very important be-

cause they store the layout information for objects. If the

class pointer in an object is corrupted, or the metadata in

Klass is lost, data within the object will become uninter-

pretable.

PJH is implemented as an independent Persistent Space

against the original PSHeap. It is designed as a non-

generational heap since we believe that NVM will be mostly

used to store long-lived data due to its persistence guarantee

and inferior performance compared to DRAM as reported by

previous work [21, 44]. The garbage collection algorithm for

PJH resembles the old GC in PSGC in that it is designed for

long-lived objects and infrequent collections. The main com-

ponents of PJH include metadata area, name table, Klass seg-

ment and data heap. All the components should be persisted

in NVM to guarantee the crash-consistency of the PJH.

Data heap and Klass segment. Java objects required to

be persisted are stored in the data heap. The object header

layout is the same as that in the normal Java heap; so each

persistent object still holds a class pointer to its class-related

metadata to its Klass. All Klasses used by persistent objects

are stored in the Klass segment and managed separately from

the original Meta Space.

Name table. The name table stores mappings from string

constants to two different kinds of entries: Klass entries and

root entries. A Klass entry stores the start address of a Klass

in the Klass segment, which is set by JVM when an object is

created in NVM while its Klass does not exist in the Klass

segment. A root entry stores the address of a root object,

which should be set and managed by users. Root objects are

essential especially after a system reboot, since they are the

only known entry points to access objects in data heap.

Metadata area. The metadata area shown in figure 7

is kept for memorizing heap-related metadata to build a

reusable and crash-consistent heap. The address hint stores

the starting virtual address of the whole heap for future heap

reloading, while the heap size stores the maximum address

space the PJH can occupy. The top address can be used to

calculate the allocated bytes of PJH. Other information is es-

sential to implement a recoverable garbage collector for PJH

and will be discussed in detail later.

Address Hint

Heap Size

Top Address

GC-related

Figure 7. The components for the metadata area in PJH

3.2 Language Extension: pnew

To allow users to create objects on NVM, we add a keyword

pnew to the Java programming language. The keyword has

similar syntax rules to new except that the corresponding ob-

jects will be laid on NVM. We have modified Javac to con-

vert pnew into four different bytecodes accounting for differ-

ent syntaxes: pnew (normal instances), panewarray (object

arrays), pnewarray (primitive arrays) and pmultianewarray

(multi-dimensional arrays). Those bytecodes will put objects

into PJH regardless of their types. Note that the keyword

pnew only allocates an object on NVM without considering

its fields. If users want to make certain fields of an object per-

sistent, they may need to implement a new constructor with

pnew.

The keyword pnew enables programmers to tackle with

NVM in a very familiar way. Figure 8 shows how to define

the class Person in section 2. Since it does not impose restric-

tions on which type can be persisted, the class Person does

not need to be extended from any particular types, nor do its

fields need to be changed. The resulting code is very similar

to that written for original Java except for the pnew keyword

and the newly added constructor for String, so it is easy to

understand.

Note that the pnew keywords in the constructor can be

freely replaced with new, as we do not force the invariants for

references at the language level. Users are allowed to define

references to volatile memory to support applications using a

mix of NVM and DRAM, as required by prior work [21, 44].

1 public class Person {

2 // fields

3 private Integer id;

4 private String name;

5

6 // constructor

7 public Person(Integer id, String name) {

8 this.id = pnew Integer(id);

9 this.name = pnew String(name, true);

10 }

11

12 // a method example

13 public Integer getId() {

14 return this.id;

15 }

16

17

18 }

Figure 8. The declaration for class Person atop PJH

Alias Klasses: Our design allows objects of the same type

to be stored in both DRAM and NVM, which violates the

assumption of original Java runtime. In Java, each Klass will

contain a data structure called constant pool [24]. Constant

pools store important symbols which will be resolved during

runtime. For each class symbol, a constant pool will initially

create a slot and store a reference to its name (a string con-

stant). If the symbol is resolved, the slot will instead store

the address of the corresponding Klass.

1 Person a = new Person(...);

2 Person b = pnew Person(...);

3 somefunc((Person)a);

4 // ClassCastException here!

Figure 9. A simple program encountering wrong exception

when using pnew

This design works perfectly in the stock JVM, but it in-

duces some problem in PJH. Consider the code in figure 9

where we subsequently create two objects a and b of type

Person with new and pnew respectively. Afterwards, code in

line 3 tries to cast the object type into Person, which should

have been a redundant type casting operation. Nevertheless,

the program ends up with a ClassCastException.

The problem happens because Person objects are stored

in both volatile and non-volatile memory, resulting in two

different Klasses. Meanwhile, the constant pool keeps only

one slot for each class symbol. In the example, JVM will

find that the object is volatile and allocate the corresponding

Klass for Person (denoted as Kp) in DRAM when creating a.

Afterwards, JVM soon realizes that object b should be persis-

tent, so it also creates a Klass for Person again in the Klass

Segment in PJH (K′

p). Since the addresses for two Klasses

differ, the constant pool has to store the address of K′

p to re-

place that of Kp. On type casting, JVM finds that the resolved

class in its constant pool (K′

p) is at odds with the type of a

(Kp), so it throws an exception.

We introduce a concept named alias Klass to handle this

problem. Two Klasses are an alias to each other if they are

logically the same class but stored in different places (NVM

and DRAM). It is implemented by introducing a new field

in all Klasses referring to its alias Klass. Aliases will share

metadata like static members and methods to ensure correct-

ness. We add the alias check into type checking within JVM

to avoid wrong exceptions. We have also extended the type

lattice in the OpenJDK Server Compiler [36] to consider

aliases during JIT optimizations.

Original type-related checks like subtype check and class-

loader check [23] are also extended. Taking subtype check

as an example. Suppose we want to check the subtype rela-

tionship between class A and B, and they both have an alias

(A’ and B’ respectively), then we should consider the sub-

type relationship for four pairs of classes: A and B, A’ and

B, A and B’, A’ and B’. The check will be passed if any of

those pairs is proved to have a subtype relationship. The algo-

rithm seems more complicated than before, but in most cases

where both A and B have no alias, it runs exactly the same

as the original one.

3.3 Heap Management

In our programming model, users are allowed to create mul-

tiple PJH instances served for various applications. They

are also required to define root objects as handles to access

the persistent objects even after a system reboot. We have

implemented some basic APIs (shown in table 1) in Java

standard library (JDK) to help them manage the heap in-

stances and root objects. Those APIs can be classified into

two groups: createHeap, loadHeap and existsHeap are heap-

related while setRoot and getRoot are root-related. Figure 10

shows a simple example where we want to locate some data

in a heap or initialize the heap if it does not exist.

API Args Description

createHeap name, size create a PJH instance

loadHeap name load a PJH instance into current JVM

existsHeap name check if a PJH instance exists

setRoot name, object mark an object as a root

getRoot name fetch a root object

Table 1. APIs for PJH management

1 // Check if the heap exists

2 if (existsHeap("Jimmy")) {

3 // If so, load the heap and fetch objects

4 loadHeap("Jimmy");

5 Person p = (Person) getRoot("Jimmy_info");

6 } else {

7 // Otherwise, create a new heap and objects

8 long size = 1024 * 1024;

9 createHeap("Jimmy", size);

10 Person p = pnew Person(...);

11 setRoot("Jimmy_info", p);

12 }

Figure 10. A simple example using heap management APIs

Heap-related APIs. Java programmers can invoke create-

Heap (line 9) to create a PJH instance with specified name

and size (in bytes). We have implemented an external name

manager responsible for the mapping between the name and

real data of a PJH instance. createHeap will notify the name

manager to insert a new mapping into the table. Furthermore,

the starting (virtual) address should also be stored as address

hint in the metadata area of the PJH instance for future use.

Afterwards, users can use pnew to allocate objects on the

newly created heap (line 10).

Users are allowed to load pre-existing PJH instances into

current JVM by invoking loadHeap. They can optionally call

existsHeap in advance (line 2) to check if a PJH instance has

already existed. When loadHeap is finally invoked at line 4,

the external name manager will locate the PJH instance and

return its starting address by fetching the address hint. After-

wards, JVM will map the whole PJH at the starting address.

If the map phase fails due to the address occupied by the

normal heap, we have to move the whole PJH into another

virtual address. Since all the pointers within heap become

trash, a thorough scan is warranted to update pointers. The

remap phase might be very costly, but it may rarely happen

thanks to the large virtual address space of 64-bit OSes. If

the map operation succeeds, it will be followed by a class

reinitialization phase.

The stock JVM will allocate a new Klass data structure in

its Meta Space for each class initialization. However, if we

bluntly create new Klasses in the Klass segment during class

reinitialization, all class pointers in PJH will become trash,

which is unacceptable. To avoid invalidating class pointers,

we require that all Klasses in PJH stand for a place holder and

be initialized in place. In this way, all objects and class point-

ers will become available after class reinitialization. Our de-

sign makes the load phase of PJH very fast because the time

overhead is directly proportional to the number of Klasses

instead of objects. Meanwhile, the number of Klasses in

the Klass Segment is usually trivial. For example, a typical

TPCC [41] workload only requires nine different data classes

to be persisted. After class reinitialization, loadHeap will re-

turn and users are free to access the persistent data in the

loaded PJH instance.

Root-related APIs. Root objects marks some known loca-

tions of persistent objects and can be used as entry points to

access PJH especially when a PJH instance is reloaded. get-

Root and setRoot serve as getter/setter for the root objects.

When getRoot is called at line 5, the corresponding object p

will be returned. Since we don’t store the type of the root ob-

ject, the return type will be Object, and users are responsible

for type casting. After that, users can fetch other persistent

data by accessing p. Similarly, setRoot at line 11 receives an

object in arbitrary type and stores its address in the root table

with the specified name for future use.

3.4 Referential Integrity

The design of PJH has decoupled the persistence between

an object and its fields: an object can be stored in NVM

with a reference to DRAM. We allow those Non-Volatile-

to-Volatile (NV-to-V) pointers to reflect the fact that not all

fields of a data structure need to be persisted. Programmers

should be permitted to lay those fields, such as data cache

and locks, in volatile memory for the sake of performance.

Unfortunately, this design violates referential integrity [8] in

Java, which guarantees all references point to valid data after

crash recovery. If users try to access a reference to volatile

memory after heap reloading, the reference can point to any-

where and modifications of the referenced data can cause un-

defined consequences. In contrast, an over-restricted invari-

ant on references can ensure correctness, but makes it diffi-

cult to leverage DRAM. To this end, we have provided three

different safety levels according to various requirements on

usability and safety.

User-guaranteed safety. Users need to be aware of the

presence of volatile pointers and avoid directly using them

after a reload of PJH. This safety level lays the burden of

checking on programmers and may cause unknown errors.

However, it provides the best performance compared to oth-

ers.

Zeroing safety. A PJH instance will first step into a check-

ing phase before loading, and all out pointers will be nulli-

fied. In this way, applications can easily tell if they have suf-

fered a Java execution context loss with null-checks. Even

1 Person x = pnew Person(...);

2 Person[] z = pnew Person[10];

3 // After some operations...

4

5 Field f = x.getClass.getDeclaredField("id");

6 // Newly added APIs below:

7 f.flush(x); // for normal fields (flush x.id)

8 Array.flush(z, 3); // for arrays (flush z[3])

Figure 11. A simple program to illustrate our flush APIs

the worst case for a careless access on invalid volatile point-

ers will only get a NullPointerException, which is much bet-

ter than one could experience in user-guarantee safety level.

Zeroing safety is enabled by default in our current implemen-

tation.

The major disadvantage of zeroing safety is that the check-

ing phase will traverse the whole heap and slow down the

heap loading. To mitigate the traversal overhead, PJH can

maintain a card table to bookkeep the out pointers in a coarse-

grained fashion. Once reloading, only memory areas with out

pointers should be scanned. Users can additionally launch a

helper Java process to nullify the out pointers in background

by invoking loadHeap after the PJH is unloaded so as to

move the check phase off the critical path.

Type-based safety. For users who really want to access

NVM safely, we have implemented a library atop Java to

allow them to define classes with simple annotations, and

only objects with those classes will be persisted into PJH (in-

troduced in section 5). This safety level guarantees that no

pointers within PJH will point out of it, and thus provides

a similar safety level to NV-Heaps [8]. However, it requires

applications to be modified and annotated to fit NVM.

3.5 Persistence Guarantee

Mainstream computer architectures only have volatile caches

and thus require cache flush operations like clflush to en-

sure data persisted in NVM. To preserve persistence order-

ing, we may further require memory fence instructions (such

as sfence). The pnew keyword is only used for object alloca-

tion, so we can only provide persistence guarantee for heap-

related metadata to build a recoverable heap regardless of

crashes (discussed in section 4) with those instructions. As

for the application-level guarantee, we have provided some

basic field-level APIs to manage the persistence of objects in

a fine-grained way. Figure 11 illustrates an example to lever-

age our APIs. To persist field id in object x, we must fetch

the incarnation of id at runtime with Java Reflect APIs, such

as getDeclaredField. After that, we can use the newly added

flush interface to persist x.id. If applications want to manip-

ulate arrays, they can use Array.flush to flush certain object

with offset i. The largest work set for those two APIs are re-

stricted to 8 bytes to preserve atomicity. Besides, the imple-

mentation of those two APIs should add a fence instruction

for ordering guarantee.

Additionally, we have also added a coarse-grained flush

method in the implementation of Object class for perfor-

mance consideration. This method will flush all the data

fields in the object into NVM with only one fence instruction

in the end. It is suitable for scenarios where the persistent or-

der among fields of an object doesn’t matter. Other advanced

features, such as transitively persist all data reachable from

an object, can be easily implemented with such basic meth-

ods.

Note that the APIs mentioned above are platform-

independent and can be adaptively implemented for various

architectures. For example, the flush calls can be transformed

to no-ops if the JVM is running on an architecture equipped

with persistent cache. The fence instructions can also be elim-

inated atop a strict memory model.

4 Crash-consistent Heap

The design of PJH should consider crashes which can hap-

pen at any time to avoid inconsistency. To this end, Espresso

enhances the allocation and garbage collection phase to en-

sure that the heap can be recovered to a consistent state upon

failure.

4.1 Crash-consistent Allocation

The persistent heap maintains a variable named top4 to mem-

orize how much memory resource has been allocated. The

value of top is replicated in the PJH for future heap reload-

ing. As we mentioned before, users are permitted to exploit

pnew to create a persistent object, which has an impact on

the heap-related metadata. The allocation can be divided into

three steps:

• (1) Fetching the Klass pointer from the constant pool;

• (2) Allocating memory and updating the value of top;

• (3) Initializing the object header.

Since the Java compiler Javac guarantees that an ob-

ject will not become visible until the header is initialized,

Espresso does not need to consider inferences with other

threads. To make the allocation crash-consistent, the replica

of the top value in PJH should be persisted as soon as the

modification on the volatile one in step (2), e.g., through

cache flush and fence instructions. Otherwise, some created

objects may be treated as unallocated and truncated during

recovery due to the stale top value. Further, the Klass pointer

update should be persisted in step (3) to avoid the situation

where an initialized object refers to some corrupted Klass

metadata.

4.2 Crash-consistent Garbage Collection

Since the life cycles for persistent objects are often long, we

reuse the old GC algorithm in PSGC to collect them. How-

ever, the original algorithm needs to be carefully enhanced

for crash consistency consideration.

4top is very similar to brk in Linux and it is named by the stock JVM.

A Brief review of PSGC. PSGC exploits a three-phase

region-based algorithm for its old GC. The whole heap has

been divided into many small areas named regions. The first

marking phase will mark live objects from all roots. PSGC

has maintained a read-only bitmap called mark bitmap to

memorize all live objects in a memory-efficient way.

The second phase, namely summary phase, will summa-

rize the heap spaces and generate region-based indices to

store the destination address of all live objects. After the

summary phase, the destination address for each live object

is determined. Note that the summary phase is idempotent:

the indices are derived only from the mark bitmap; so the re-

sult of summary phase will be the same no matter how many

times it executes, as long as the mark bitmap keeps intact.

In the last compact phase, GC threads will pick out unpro-

cessed regions and copy live objects into their destinations.

The regions will be processed concurrently, but each region

will only be processed by one unique worker thread. For each

object, a GC thread will first get its destination address by

querying the region-based indices and copy its content there.

Afterwards, it will move to the copied object at the destina-

tion address, look into all references within it, and correct

them respectively with the help of indices.

Crash-consistent GC. An important feature of PS old

GC is that the heap state remains inconsistent throughout

the compact phase. Therefore, a reasonable method to re-

cover upon a crash is to continue GC from the crash point to

the end of compaction where the whole heap becomes con-

sistent again. We have enhanced the PS old GC with this

method and proposed a crash-consistent garbage collector. It

is mainly built on two components: a snapshot taken before

compact phase to guarantee a collection can finally complete

regardless of crashes, and a timestamp-based algorithm to

infer and recover from the crash state.

Before the compact phase, Espresso will take a consistent

snapshot over the whole heap and persist it into NVM. It

is achieved by persisting the mark bitmap generated by the

mark phase; Espresso has extended PSGC to also mark live

objects in the persistent space. Since the summary phase is

deterministic and idempotent, the snapshot is enough to re-

calculate region-based indices and thereby determine des-

tination addresses for all live objects. If a crash happens,

Espresso can guarantee that the destination address is still

available for any object, by reloading the snapshot from

NVM. After taking the snapshot, Espresso will mark the

whole heap as being garbage collected in the PJH metadata

area so that a crash will trigger the recovery.

Nevertheless, the consistent snapshot is not enough for re-

covery. Consider the case shown in figure 12a where a live

object x is being copied when a crash happens. The object

x has two fields: a reference to another object y and a data

field a storing an integer. x is half-copied in this case where

Espresso fails to copy the data field before the crash. Since

H

H

Region 1

Region 2

Dest Region 1

Dest Region 2

x

y

H

x’

H

y’

a

(a) without timestamps

2

2

Region 1

Region 2

Dest Region 1

Dest Region 2

x

y

2

x’

y’

a

(b) with timestamps

Figure 12. A case in GC which is only recoverable with times-

tamps

the snapshot only provides information about destination ad-

dresses, it is impossible for Espresso to find out the data field

has not been copied, and the user data will be lost. The prob-

lem happens because Espresso don’t know the crash state of

live objects. If Espresso is aware that an object is copied, not

copied, or half-copied, it can provide solutions for those sce-

narios respectively.

To this end, we have proposed a timestamp-based algo-

rithm to infer the crash state of objects. It is implemented

by reusing metadata bits from the Java object header. Those

bits are only kept for young space and become useless once

objects are copied out, so it is safe to reuse them. With those

bits, Espresso will install a local timestamp in each object

header, and maintain a global timestamp in PJH metadata

area. Initially, the local timestamp should conform to the

global one; but Espresso will increase the global timestamp

before the compact phase starts, making all objects stale. The

local timestamp of an object will not be synchronized to the

global one until its whole content has been copied, updated

and persisted. If a crash happens, Espresso can tell whether

an object has been processed by simply inspecting the lo-

cal timestamp. If the timestamp is stale, Espresso will copy

and update references for the object with the help of the con-

sistent snapshot. Combining timestamps with the snapshot,

Espresso is capable of recovering from crash and continue

the collection till its end.

Figure 12b illustrates how Espresso handles the previously

mentioned case at presence of timestamps. Suppose the cur-

rent global timestamp is 3, which invalidates the local one in

x whose value is 2. Since the copy phase has not finished,

the timestamp in x remains unchanged. If a crash occurs

when x is half-copied, Espresso will find the local timestamp

stale and redo the copy phase so that the inconsistent issue is

solved.

4.3 Recovery

The recovery phase will be activated by the API loadHeap

if the heap is marked as being garbage collected in the meta-

data area. The recovery mainly contains three steps. The first

step is to reload the consistent snapshot (i.e. the mark bitmap)

for future use. Afterwards, the summary phase should be re-

done by regenerating the region-based indices for destination

address calculation. The last step is to find out all stale ob-

jects throughout the regions by reading the timestamps and

process them respectively. Additionally, Invalid references

will be nullified during the last step if the zeroing safety

level is chosen. After recovery, loadHeap will return and the

whole heap can be safely used by applications.

5 Persistent Java Object

PJH only guarantees crash consistency for heap-related meta-

data; application data may still be corrupted upon a crash.

Providing high-level guarantee like ACID in language level

would be very challenging: due to the semantic gap between

Java programs and JVM, it is troublesome and inefficient

for Java runtime to manage log space for programs as prior

work [6, 8] does. On the contrary, while a persistent layer

atop Java like JPA is helpful to provide a convenient per-

sistence programming model, it incurs high overhead upon

NVM. To this end, Espresso builds persistent Java object

(PJO) atop the persistent Java heap (PJH) as an alternative

for persistence programming.

PJH already allows applications like databases to store

their data in NVM as normal Java objects. This offers oppor-

tunities to rethink about the persistent layer. PJO provides

backward compatibility through reusing the interfaces and

annotations provided by JPA. Yet, it reaps the benefits of-

fered by PJH with better performance.

Figure 14 illustrates the modified architecture of data-

base frameworks with PJO. The programmer can still use

em.persist(p) to persist a Person object into NVM. However,

when real persistent work begins, data in p will be directly

shipped to the backend database. The PJO provider still helps

manage the persistent objects, but the SQL transformation

phase is removed.

Figure 13 provides a running example to persist user data

in ACID fashion with PJO. The code should be wrapped with

transaction-related instructions (line 2 and line 6), whose se-

mantics are similar to the atomic blocks in NVHeaps [8] and

Mnemosyne [42]. Since PJO hides the complexity of persis-

tent data management from users, they can directly use new

to create objects, but invoke em.persist to inform PJO that

the object should be persisted. When a transaction is going

to commit, PJO will locate all objects required to be persisted

and convey them to the backend database.

1 // Start a transaction

2 em.getTransaction().begin();

3 Person p = new Person(...);

4 em.persist(p);

5 // Transaction commits

6 em.getTransaction().commit();

Figure 13. Programming in PJO with ACID semantic

Espresso provides a new lightweight abstraction called

DBPersistable to support all objects actually stored in NVM.

The DBPerson class in figure 14 is an example of DBPer-

sistable. A DBPersistable object resembles the Persistable

one except that the control fields related to PJO providers

are stripped.

Person p;

em.persist(p);

DBPerson p’;

persistInTable(p’);

EntityManager
(Application)

(PJO Provider)

(Backend Database)

Figure 14. NVM-aware infrastructure of DataNucleus

Figure 15 shows how PJO exactly works for a persist op-

eration on a Person object, whose data fields (id and name)

are referenced by solid lines. The PJO provider (our mod-

ified DataNucleus) will enhance Person so that each object

keeps a field named StateManager for metadata management

and access control (referenced by a dash line). The StateMan-

ager field is transparent to applications. When persisting, a

corresponding DBPerson object will be generated with all its

data fields referenced to the Person object (figure 15b). The

DBPerson object will be shipped to the backend database for

data persistence. Now the database can directly persist it into

NVM as illustrated in figure 15c.

Once the data objects are persisted, the volatile copy left

in DRAM becomes redundant. We have implemented a data

deduplication optimization such that the data fields of ob-

jects will be redirected to the persistent data after a trans-

action commits. As illustrated in figure 15d, all data fields in

the original Person object has been modified to point to the

persisted data. Consequently, pervious volatile fields can be

reclaimed or reused to save memory resource.

Person

id name
State

Manager

DRAM

NVM

(a) An enhanced Person object

stored in DRAM

Person

id name
State

Manager

DRAM

DBPerson

NVM

(b) Creating a DBPerson object

during persisting

Person

id name
State

Manager

DBPerson

id name

DRAM

NVM

DBPerson

(c) Persisting the DBPerson ob-

ject

Person

State
Manager

DBPerson

id name

DRAM

NVM

(d) Data deduplication for the

original Person object

Figure 15. A detailed example to show how PJO exactly works

We have implemented a PJO provider by modifying

DataNucleus. It provides the same APIs as JPA does such

that no modification to applications is required. Program-

mers can leverage the APIs provided by the PJO provider to

retrieve, process and update data in an object-oriented fash-

ion. Similarly to JPA, PJO also supports various types such

as inherited classes, collections and foreign-key-like refer-

ences. The performance results for different types will be

illustrated in section 6.

6 Evaluation

6.1 Experiment setup

We have implemented PJH on OpenJDK 8u102-b14, which

comprises approximately 7,000 lines of C++ code and 300

lines of Java code. We have also modified DataNucleus to im-

plement PJO with 1,500 lines of Java code. As for the back-

end database H2, it takes about 600 LoC to make it support

both PJO (mainly for the DBPersistable interface) and PJH

(mainly replacing new with pnew). The data structures for

transaction control (like logging) remain intact. The modifi-

cation is minor considering the whole code base of H2 (about

14K LoC). In contrast, a design like PCJ would require a thor-

ough rewrite over the main data structure in H2 (an MVCC-

based B+-tree) to fit NVM, which entails an estimate of 3K

LoC.

Our evaluation is conducted on a machine with dual Intel

®XeonTM E5-2618L v3 CPUs (16 cores). It contains 64G

DRAM and 64G Viking NVDIMM device. The operating

system is Linux-4.9.6. We set the maximum Java heap size

to 8G for evaluation. All baseline in this section are running

on the stock JVM.

6.2 Comparison with PCJ

PCJ provides an independent type system against the original

one in Java including tuples, generic arrays and hashmaps.

We also implement similar data structures atop our PJH.

Since PCJ provides ACID semantics for all operations, we

also add ACID guarantee by providing a simple undo log to

make a fair comparison. The microbenchmarks conduct mil-

lions of primitive operations (create/get/set) on those data

types and then collect the execution time. The results are

shown in figure 17.

Our PJH greatly outperforms against PCJ, and the speedup

ranges from 6.0x to 256.3x. PJH performs much better in set

and create operations in that PCJ stores data off heap and

thus require a complicated metadata update for those opera-

tions. As for get operations, the improvement of PCJ drops

due to less requirement for metadata management, but it still

outperforms PCJ by at least 6.0x.

We have further broken down the evaluation to show

where the performance improvement comes from by taking

the set operation of Tuple as an example. After manually re-

moving the GC management code in PCJ, the speedup drops

from 256.3x to 102x. If we continue removing transaction-

related invocations in PCJ, the performance will be on par

with PJH. The result suggests that overhead in PCJ mainly

comes from GC and transaction-related operations, which

can be greatly mitigated in an on-heap design like PJH.

The metadata updates mentioned in section 2.2 is trivial in

this case, since type information memorization only happens

when an PCJ object is created.

 0

 0.5

 1

 1.5

 2

 2.5

Retrieve Update Delete Create

T
h

ro
u

g
h

p
u

t

Operation

H2-JPA

H2-PJO

H2-PJO-v

(a) BasicTest

 0

 0.5

 1

 1.5

 2

 2.5

 3

Retrieve Update Delete Create

T
h

ro
u

g
h

p
u

t

Operation

H2-JPA

H2-PJO

H2-PJO-v

(b) ExtTest

 0

 1

 2

 3

 4

 5

Retrieve Update Delete Create

T
h

ro
u

g
h

p
u

t

Operation

H2-JPA

H2-PJO

H2-PJO-v

(c) CollectionTest

 0

 0.5

 1

 1.5

 2

 2.5

 3

Retrieve Update Delete Create

T
h

ro
u

g
h

p
u

t

Operation

H2-JPA

H2-PJO

H2-PJO-v

(d) NodeTest

Figure 16. Evaluation for JPAB benchmark

 1

 10

 100

ArrayList Generic Tuple Primitive Hashmap

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

Data type

Create

Set

Get

Figure 17. Normalized speedup for PJH compared to PCJ

6.3 Comparison with JPA

We use the JPA Benchmark (JPAB) [34] to compare PJO

against JPA, whose detailed description is illustrated in ta-

ble 2. JPAB contains normal CRUD5 operations and tests

over various features of a JPA framework, such as inheri-

tance, collections and foreign keys. We use unmodified JPA

and H2 running on NVDIMM as for the baseline (H2-JPA).

The evaluation result in figure 16 indicates that PJO (H2-

PJO) outperforms H2-JPA in all test cases and provides up

to 3.24x speedup.

Name Description

BasicTest Testing over basic user-defined classes

ExtTest Testing over classes with inheritance relationships

CollectionTest Testing over classes containing collection members

NodeTest Testing over classes with foreign-key-like references

Table 2. The description for each test cases in JPAB

To study the overhead brought by PJH, we have also imple-

mented PJO on the stock JVM (H2-PJO-v in figure 16). The

data in H2 will be stored within normal heap supported by

DRAM. The result shows that PJO introduces 8%-34% over-

head due to persistence guarantee and runtime issues such

as more complex type checking. It is encouraging for users

who want to port their original applications onto NVM with

reasonable performance penalty.

We have also exploited BasicTest as an example to pro-

vide a detailed analysis. We break down the performance

into three parts: execution in H2 database, transformation for

SQL statements and others. As illustrated in figure 18, the

transformation overhead is significantly reduced thanks to

PJO. Furthermore, the execution time in H2 also decreases

5CRUD means four basic operations of persistent storage: create, read, up-

date and delete

for most cases, which can be attributed to the interface

changes from the JDBC interfaces to our DBPersistable ab-

stractions.

 0

 5

 10

 15

 20

 25

 30

 35

 40

H
2-P

JO
H

2-JP
A

H
2-P

JO
H

2-JP
A

H
2-P

JO
H

2-JP
A

H
2-P

JO
H

2-JP
A

T
im

e
 (

s
)

Execution
Transformation
Other

CreateDeleteUpdateRetrieve

Figure 18. Breakdown analysis for BasicTest

6.4 Microbenchmark

Heap loading time. We test the heap loading time with

a micro-benchmark which generates a large number of ob-

jects (from 0.2 million to 2 million) of 20 different Klasses.

Furthermore, we evaluate heap loading with both user-

guaranteed (UG) and zeroing (Zero) safety. As shown in fig-

ure 19, the heap loading time for user-guaranteed safety re-

mains constant when the number of objects increases, as the

loading time is dominated by the number of Klasses instead

of objects (discussed in section 3.3). In contrast, the loading

time grows linearly with the number of objects with zeroing

safety since it requires a whole heap scan to validate all ob-

jects. When the number of objects reaches 2 million, the heap

loading time is about 72.76ms, which is still trivial compared

to the JVM warm-up time (at least several seconds) as shown

in previous work [25].

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.5 1 1.5 2

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Object Count (million)

UG

Zero

Figure 19. Heap loading time with different safety levels

Recoverable GC. We use a micro-benchmark to test our

recoverable GC. The benchmark allocates a large array with

millions of objects (from 10 million to 20 million) on PJH

and one third of the references will be removed afterwards.

It later invokes System.gc() to collect PJH by force.

We first evaluate the efficiency of our recoverable GC

against the vanilla Parallel Scavenge collector (PSGC) in

OpenJDK 8. Since the maximum working set is about

500MB, the heap size for both collectors is set to 1GB

for this test. The result is illustrated in figure 20. Our en-

hanced collector performs much better than PSGC thanks

to the single-generational heap organization. Compared to

our design, PSGC maintains a young space and has to ini-

tiate young GC when it becomes full, which significantly

increases the overall GC time. We have also enlarged the

heap to 4GB for PSGC to avoid young GC and evaluate with

the same benchmark. The result denoted as PSGC-4G in fig-

ure 20 suggests that our recoverable GC still has compara-

ble performance against PSGC while additionally providing

crash consistency.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 8 10 12 14 16 18 20 22

G
C

 T
im

e
 (

s
)

Object Count (million)

PSGC
Recoverable

PSGC-4G

Figure 20. GC time for the microbenchmark

To evaluate recoverability, we inserted random crash

events by sending SIGKILL signals during GC. The array

size is fixed at 20 million to involve many regions for col-

lection in parallel so that the heap is prone to inconsis-

tency issues. The evaluation is repeated 50 times and the re-

sult shows that the recovery phase can always recover from

crash and complete the whole collection. The average and

maximum recovery time are 2.574s and 4.161s respectively,

which is close to that for a normal old GC phase.

7 Related Work

Non-volatile Memory Heaps The invention of recover-

able VM [39] once stimulates research on building persis-

tent, recoverable and efficient heaps for user-defined ob-

jects [28, 35]. Orthogonally persistent Java [3, 19, 20] is

proposed to provide a whole-system-persistent Java runtime

with a non-volatile heap. However, it has to cope with tricky

issues like the System class. Subsequent work turns to per-

sistent object stores [26, 37, 43] and entity-relation map-

pings [9, 18] for practice. Espresso instead discards the re-

quirement of whole-system persistence and provides both

coarse-grained and fine-grained persistence atop NVM.

The topic on persistent memory heaps has been renewed

recently due to the development of NVM technology. NV-

Heaps [8] pioneers in specifying cross-heap pointers. It

avoids potential memory leaks by directly disabling non-

volatile-to-volatile pointers with a compile-time checker.

However, this restriction precludes scenarios where applica-

tions leverage both DRAM and NVM, which are common

in state-of-art NVM-based systems. Besides, NV-Heaps pro-

vides a simple reference-counting garbage collector and has

to introduce weak references to manually avoid memory leak

through cycles. Our PJH supports flexible pointers and in-

tegrates with the fully automatic garbage collector within

JVM. Makalu [4] is a persistent memory allocator built on

the programming model of Atlas [6]. It provides persistent

and recoverable guarantee for the allocation metadata and

leverages a recovery-time garbage collector. Espresso also

considers the crash consistency for the heap but the garbage

collection is online thanks to Java’s GC service.

Java Runtime Optimization Improving the efficiency of

Java runtime has drawn large attention due to its wide utiliza-

tion in large-scale applications. HotTub [25] finds that class

loading is an important source of inefficiency during JVM

warm-up and introduces a pool with virtual machines whose

classes have been loaded to mitigate the overhead. Our work

shares similar wisdom of reducing loading time but in a dif-

ferent way through NVM.

Another line of work studies the performance of garbage

collectors and leverage different ways to optimize them. Nu-

maGiC [11, 12] finds that the old garbage collector in Java

suffers from scalability issues due to NUMA-unawareness

and comes up with a NUMA-friendly algorithm. Yu et

al. [46] spot out a performance bottleneck upon destination

address calculation in PS old GC and resolved it by caching

previous results. Yak GC [33] tries to avoid unnecessary ob-

ject copying with a region-based algorithm. These mecha-

nisms are orthogonal but may further help optimize our re-

coverable GC.

Transactions on NVM-based Systems Transactions are

a hot topic in building NVM-backed systems [5–7, 10, 14,

22, 27, 29, 42]. Mnemosyne [42] implements semantic-free

raw word log (RAWL) in support of transactions. Atlas [5, 6]

instead uses synchronization variables like locks and recov-

ery code to provide transaction-like ACID properties, and

NVThreads [14] tries to optimize it with a coarse-grained

logging protocol. Other work [10, 22, 27, 29] points out that

the persist operations (including clflush) should not be in-

cluded in the critical path of transactions and provide vari-

ous solutions to move them background. We also propose an

abstraction named PJO to provide transaction interfaces.

8 Conclusions

This paper proposed Espresso to enable Java programmers

to exploit NVM to ease persistence management. Espresso

comprised Persistent Java Heap (PJH) and Persistent Java

Object (PJO) atop PJH. Evaluation showed that the eased per-

sistence management resulted in notable performance boost.

References
[1] DataNucleus. http://www.datanucleus.com/.

[2] Open source database engines in java. https://java-source.net/open-

source/database-engines.

[3] M. P. Atkinson, L. Daynes, M. J. Jordan, T. Printezis, and S. Spence.

An orthogonally persistent java. ACM Sigmod Record, 25(4):68–75,

1996.

[4] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm. Makalu: Fast re-

coverable allocation of non-volatile memory. In Proceedings of the

2016 ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages 677–694.

ACM, 2016.

[5] H.-J. Boehm and D. R. Chakrabarti. Persistence programming mod-

els for non-volatile memory. In Proceedings of the 2016 ACM SIG-

PLAN International Symposium on Memory Management, pages 55–

67. ACM, 2016.

[6] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari. Atlas: Leveraging

locks for non-volatile memory consistency. In ACM SIGPLAN Notices,

volume 49, pages 433–452. ACM, 2014.

[7] H. Chen, R. Chen, X. Wei, J. Shi, Y. Chen, Z. Wang, B. Zang, and

H. Guan. Fast in-memory transaction processing using rdma and htm.

ACM Trans. Comput. Syst., 35(1):3:1–3:37, July 2017.

[8] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,

R. Jhala, and S. Swanson. Nv-heaps: making persistent objects fast

and safe with next-generation, non-volatile memories. ACM Sigplan

Notices, 46(3):105–118, 2011.

[9] L. DeMichiel and M. Keith. Java persistence api. JSR, 220, 2006.

[10] M. Dong and H. Chen. Soft updates made simple and fast on non-

volatile memory. In 2017 USENIX Annual Technical Conference

(USENIX ATC 17), pages 719–731, Santa Clara, CA, 2017. USENIX

Association.

[11] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. A study of the scal-

ability of stop-the-world garbage collectors on multicores. In ACM

SIGPLAN Notices, volume 48, pages 229–240. ACM, 2013.

[12] L. Gidra, G. Thomas, J. Sopena, M. Shapiro, and N. Nguyen. Nu-

magic: a garbage collector for big data on big numa machines. In

ACM SIGARCH Computer Architecture News, volume 43, pages 661–

673. ACM, 2015.

[13] Hewlett Packard Enterprise. Managed data structures.

https://github.com/HewlettPackard/mds.

[14] T. C.-H. Hsu, H. Brügner, I. Roy, K. Keeton, and P. Eugster. Nvthreads:

Practical persistence for multi-threaded applications. In Proceedings

of the Twelfth European Conference on Computer Systems, pages 468–

482. ACM, 2017.

[15] INTEL. Persistent collections for java. https://github.com/pmem/pcj.

[16] INTEL. pmem.io: Persistent memory programming. http://pmem.io/.

[17] Intel and Micron. Intel and micron produce breakthrough mem-

ory technology. https://newsroom.intel.com/news-releases/intel-and-

micron-produce-breakthrough-memory-technology/.

[18] D. Jordan and C. Russell. Java data objects. " O’Reilly Media, Inc.",

2003.

[19] M. Jordan. Early experiences with persistent java. In Proceedings of

the First International Workshop on Persistence and Java, 2001.

[20] M. J. Jordan and M. P. Atkinson. Orthogonal persistence for javaâĂŤa

mid-term report. Morrison et al.[161], pages 335–352, 1999.

[21] H. Kimura. Foedus: Oltp engine for a thousand cores and nvram. In

Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data, pages 691–706. ACM, 2015.

[22] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch. High-

performance transactions for persistent memories. In Proceedings of

the Twenty-First International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 399–411.

ACM, 2016.

[23] S. Liang and G. Bracha. Dynamic class loading in the java virtual

machine. Acm sigplan notices, 33(10):36–44, 1998.

[24] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java virtual

machine specification. Pearson Education, 2014.

[25] D. Lion, A. Chiu, H. Sun, X. Zhuang, N. Grcevski, and D. Yuan. Don’t

get caught in the cold, warm-up your jvm: Understand and eliminate

jvm warm-up overhead in data-parallel systems. In Proceedings of the

12th USENIX conference on Operating Systems Design and Implemen-

tation, pages 383–400. USENIX Association, 2016.

[26] B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber, U. Mahesh-

wari, A. C. Myers, M. Day, and L. Shrira. Safe and efficient sharing

of persistent objects in thor. ACM SIGMOD Record, 25(2):318–329,

1996.

[27] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren.

Dudetm: Building durable transactions with decoupling for persistent

memory. In Proceedings of the Twenty-Second International Confer-

ence on Architectural Support for Programming Languages and Oper-

ating Systems, pages 329–343. ACM, 2017.

[28] D. E. Lowell and P. M. Chen. Free transactions with rio vista. In ACM

SIGOPS Operating Systems Review, volume 31, pages 92–101. ACM,

1997.

[29] A. Memaripour, A. Badam, A. Phanishayee, Y. Zhou, R. Alagappan,

K. Strauss, and S. Swanson. Atomic in-place updates for non-volatile

main memories with kamino-tx. In EuroSys, pages 499–512, 2017.

[30] Micron. Nvdimm. https://www.micron.com/products/dram-

modules/nvdimm/.

[31] T. Mueller. H2 database, 2012.

[32] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton.

An analysis of persistent memory use with whisper. In Proceedings of

the Twenty-Second International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 135–148.

ACM, 2017.

[33] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu, S. Alamian, and

O. Mutlu. Yak: A high-performance big-data-friendly garbage col-

lector. In Proc. the 12th USENIX Conference on Operating Systems

Design and Implementation, 2016.

[34] ObjectDB Software Ltd. Jpa performance benchmark (jpab).

http://www.jpab.org/.

[35] J. O’Toole, S. Nettles, and D. Gifford. Concurrent compacting garbage

collection of a persistent heap. In ACM SIGOPS Operating Systems

Review, volume 27, pages 161–174. ACM, 1994.

[36] M. Paleczny, C. Vick, and C. Click. The java hotspot tm server com-

piler. In Proceedings of the 2001 Symposium on Java TM Virtual

Machine Research and Technology Symposium-Volume 1, pages 1–1.

USENIX Association, 2001.

[37] J. Paterson, S. Edlich, H. Hörning, and R. Hörning. db4o. 2006.

[38] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency. ACM

SIGARCH Computer Architecture News, 42(3):265–276, 2014.

[39] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere, and J. J.

Kistler. Lightweight recoverable virtual memory. ACM Transactions

on Computer Systems (TOCS), 12(1):33–57, 1994.

[40] J. Seo, W.-H. Kim, W. Baek, B. Nam, and S. H. Noh. Failure-atomic

slotted paging for persistent memory. In Proceedings of the Twenty-

Second International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 91–104. ACM,

2017.

[41] The Transaction Processing Council. TPC-C Benchmark V5.11.

h�p://www.tpc.org/tpcc/.

[42] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight

persistent memory. In ACM SIGARCH Computer Architecture News,

http://www.tpc.org/tpcc/

volume 39, pages 91–104. ACM, 2011.

[43] S. J. White and D. J. DeWitt. QuickStore: A high performance mapped

object store, volume 23. ACM, 1994.

[44] F. Xia, D. Jiang, J. Xiong, and N. Sun. Hikv: A hybrid index key-

value store for dram-nvm memory systems. In 2017 USENIX Annual

Technical Conference (USENIX ATC 17), pages 349–362, Santa Clara,

CA, 2017. USENIX Association.

[45] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He. Nv-

tree: reducing consistency cost for nvm-based single level systems. In

13th USENIX Conference on File and Storage Technologies (FAST 15),

pages 167–181, 2015.

[46] Y. Yu, T. Lei, W. Zhang, H. Chen, and B. Zang. Performance analysis

and optimization of full garbage collection in memory-hungry environ-

ments. In Proceedings of the12th ACM SIGPLAN/SIGOPS Interna-

tional Conference on Virtual Execution Environments, pages 123–130.

ACM, 2016.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Coarse-grained Persistence with JPA
	2.2 Fine-grained Persistence with PCJ
	2.3 Requirements for Persistence Management in Java

	3 Persistent Java Heap
	3.1 Overview
	3.2 Language Extension: pnew
	3.3 Heap Management
	3.4 Referential Integrity
	3.5 Persistence Guarantee

	4 Crash-consistent Heap
	4.1 Crash-consistent Allocation
	4.2 Crash-consistent Garbage Collection
	4.3 Recovery

	5 Persistent Java Object
	6 Evaluation
	6.1 Experiment setup
	6.2 Comparison with PCJ
	6.3 Comparison with JPA
	6.4 Microbenchmark

	7 Related Work
	8 Conclusions
	References

