
Analysis and Optimizations of Java Full Garbage
Collection

Haoyu Li, Mingyu Wu, Haibo Chen
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Contact:haibochen@sjtu.edu.cn

ABSTRACT
Java runtime frees applications from manual memory man-
agement by its automatic garbage collection (GC), at the cost
of stop-the-world pauses. State-of-the-art collectors leverage
multiple generations, which will inevitably suffer from a
full GC phase scanning the whole heap and induce a pause
tens of times longer than normal collections, which largely
affects both throughput and latency of the entire system. In
this paper, we analyze the full GC performance of HotSpot
Parallel Scavenge garbage collector comprehensively and
study its algorithm design in depth. We find out that heavy
dependencies among heap regions cause poor thread utiliza-
tion. Furthermore, many heap regions contain mostly live
objects (referred to as dense regions), which are unnecessary
to collect. To solve these problems, we introduce two kinds
of optimizations: allocating shadow regions dynamically as
compaction destination to eliminate region dependencies and
skipping dense regions to reduce GC workload. Evaluation
results show the optimizations lead to averagely 2.6X (up to
4.5X) improvement in full GC throughput and thereby boost
the application performance by 18.2% on average (58.4% at
best).

KEYWORDS
Full garbage collection, Java virtual machine, Performance,
Parallel Scavenge, Memory management
ACM Reference Format:
Haoyu Li, Mingyu Wu, Haibo Chen. 2018. Analysis and Optimiza-
tions of Java Full Garbage Collection. In APSys ’18: 9th Asia-Pacific
Workshop on Systems (APSys ’18), August 27–28, 2018, Jeju Island,
Republic of Korea. ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/3265723.3265735

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6006-7/18/08. . . $15.00
https://doi.org/10.1145/3265723.3265735

1 INTRODUCTION
Java is steadily adopted by various kinds of applications due
to its virtues such as powerful functionalities, strong relia-
bility, and multi-platform portability, mainly thanks to its
underlying runtime, the Java Virtual Machine (JVM). Auto-
matic memory management, or garbage collection (GC), is
a crucial module provided by the JVM to free programmers
from manual deallocation of memory and thereby guaran-
tees both usability and memory safety. However, GC comes
with a cost. Most state-of-the-art garbage collectors leverage
the stop-the-world (STW) method for collection: when GC
starts, application threads will be suspended until all dead ob-
jects have been reclaimed. Although mainstream collectors
exploit the generational design [17] so that most collections
only touch a small portion of the heap and finish quickly,
they inevitably have to enter a phase called full GC to col-
lect the whole heap space and thus incur considerable pause
time. The problem is even aggravated in today’s prevalent
memory-intensive frameworks like Spark [19] since full GC
happens more frequently and induces longer pauses.

In this paper, we provide a comprehensive analysis of the
full GC part of Parallel Scavenge Garbage Collector (PSGC),
the default GC in the HotSpot JVM. The full GC algorithm of
PSGC divides the heap into regions and assigns them as tasks
to multiple GC threads for concurrent processing. Our anal-
ysis uncovers two problems in this algorithm: poor thread
utilization due to dependencies among regions and unsatis-
fying compaction arising from excessive data movement. To
this end, we propose two optimization techniques. For the
thread utilization problem, we introduce shadow regions to
eliminate dependencies and in turn enable more threads to
run in parallel. For the compaction efficiency problem, we
provide a region skipping design to avoid moving regions in
which most objects are alive.

We have implemented those two optimizations in the
HotSpot JVM of OpenJDK 8u and compared it with the
vanilla PSGC over applications from various benchmark
suites. The result confirms that our optimizations improve
the full GC throughput for applications by 2.6X on aver-
age (up to 4.5X) and thereby shorten the execution time of
applications by averagely 18.3% (at most 58.4%).

https://doi.org/10.1145/3265723.3265735
https://doi.org/10.1145/3265723.3265735
https://doi.org/10.1145/3265723.3265735

APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea Haoyu Li, Mingyu Wu, Haibo Chen

2 BACKGROUND
2.1 Parallel Scavenge
Parallel Scavenge (PS) is the default garbage collector in the
HotSpot JVM of OpenJDK 8. It collects objects in a stop-the-
world fashion: when a GC phase starts, all mutator threads
must be paused and GC threads will take over. Mutators
cannot be executed until all GC threads have finished their
work. This design avoids complicated coordination between
mutators and GC threads and in turn reaches satisfying GC
throughput, but it may greatly affect the application latency.

PS divides the heap into two spaces: a young space for ob-
ject creation and an old space to store long-lived objects. The
GC algorithm is also two-fold. Young GC is triggered when
the young space is used up and only collects the young space.
Full GC happens when memory resource of the whole heap
is exhausted and thus collects both spaces. To reach a satis-
fying application latency, young space is usually designed
as a small fraction of the heap region so that young GC hap-
pens frequently but finishes quickly. However, when full GC
must be initiated, mutators will experience a much longer
pause. Worse yet, full GC happens frequently in memory-
intensive applications. Our evaluation on Spark with a 20GB
heap shows that full GC phases happen every 10 seconds
and last for 3.35 seconds on average. Meanwhile, the worst
case pause time is 11.4X that of a young GC. Therefore, the
primary concern of our work is to mitigate the prohibitive
pauses caused by full GC.

2.2 Full GC algorithm
Full GC is a compaction-based algorithm that copies all live
objects into the beginning of the old space to vacate a vast
continuous free memory space. PS implements full GC as
a three-phase algorithm, including mark phase, summary
phase, and compacting phase. We will briefly explain these
three phases below.

Mark phase. In the first mark phase, GC threads will
search for live objects from known roots, such as on-stack
references and static variables. All reachable objects from
roots will be marked as alive, and their locations are recorded
in bitmaps for later use.

Summary phase. After the mark phase, the PS collector
will calculate a heap summary for all live objects based on
the pre-generated bitmaps. The summary phase is region-
based: PS partitions the JVM heap into continuous regions
of equal size (512KB by default in PSGC) and summarizes
objects within the same region together. After the summary
phase, a mapping between regions is generated so that each
source region will have its own destination regions1 for object
copying.

1A source region can have one or two destination regions.

Compacting phase. Live objects will not be moved or
modified until the last compacting phase. Since the compact-
ing phase is costly and usually accounts for over 80% of the
overall full GC time, we will focus on optimizing this phase
in this work. Compacting phase is still region-based: each
destination region stands for a task, and GC threads will
concurrently fetch destination regions and fill them up with
live objects from corresponding source regions. Reference
updates for live objects also occur during copying to destina-
tion regions. Since destination regions themselves are also
source regions for others, the GC threads must not process
them until all live objects within them are evacuated to their
destinations. This processing order is preserved by maintain-
ing a variable for each region named destination count, or
dcount, to memorize how many destination regions (exclud-
ing itself) depend on it. The summary phase will calculate
the initial dcount for each region, and once a GC thread fills
up a destination region, it will decrement dcount for all cor-
responding source regions. When a region’s dcount reaches
zero, all live objects within it have been evacuated so it can
be reused as a destination region. It will thereby be pushed
into the working stack of the GC thread which decrements
its dcount to zero and poised to accept live objects from its
source regions. Those dependencies between regions can be
used to construct a dependency graph to shape the execution
behavior of GC threads.

region 0

nulldestination:

region 1

region 0

region 2

null

region 3

region 1

obj

0

dcount: 0 1 0 1

thrd 0 thrd 1

region

live object

region 4

region 1

region 5

region 2

obj

3

1 1

obj

1

obj

2

Figure 1: An example of how full GC workload goes
imbalanced

Optimizations. As mentioned in Section 2.2, not all desti-
nation regions are available at the beginning of compaction,
so PS can only assign those available regions to GC threads
initially. This design, however, is likely to result in a load
imbalance. Take Figure 1 as an example, thread 0 and thread
1 both receive one available region (region 0 and 2) initially.
However, according to the region dependencies, region 1,
3 and 4 will eventually be pushed into thread 0’s working
stack while only region 5 will be assigned to thread 1. As
a result, PS assigns four tasks to thread 0 but two tasks to
thread 1, which leads to a load imbalance. To this end, full GC
enables work stealing so that GC threads can steal available

Analysis and Optimizations of Java Full Garbage Collection APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea

regions from other threads after their own working stacks
are drained.

Full GC also specially handles regions at the beginning of
the heap. If most objects in those regions are alive (named
dense regions in PS), the benefit of moving them forward
is diminishing. Consequently, full GC will instead organize
them as a dense prefix and avoid moving any objects therein.
Although dense prefixes can avoid data copying, they can
only be used to optimize regions at the head of a heap.

3 ANALYSIS
3.1 Thread Utilization
Although the compacting phase supports multi-threading,
our results show that it suffers from low thread utilization
and induces poor scalability in many applications. We eval-
uate Derby [20] in the SPECjvm2008 benchmark suite [14]
as an example to support our claim. Figure 2 shows the exe-
cution behavior of 16 GC threads (x-axis) in the compacting
phase over time (y-axis). The result indicates that all threads
only spend a small fraction of time (8.0% on average) work-
ing on compaction (colored bars) while wasting resources on
stealing in vain (blanks). The terrible utilization rate strongly
motivates us to optimize it.

0

200

400

600

0 5 10 15
Thread Number

E
xe

c
u

ti
o

n
 t

im
e

 (
m

s
)

Figure 2: Thread utilization in a full GC phase of
Derby

We have further profiled work stealing by dumping the
working stack for every thread and find that all except one
stack are empty most of the time. The non-empty stack,
however, has only one task being processed, which is not
available for stealing. As mentioned in Section 2.2, a desti-
nation region cannot be processed until its dcount reaches
zero. Therefore, the Derby scenario happens when the depen-
dency graph contains long dependency chains as illustrated
in Figure 3. This simplified case comprises four regions and
all regions have only one destination, which forms a depen-
dency chain, where only one region is available for process-
ing at any time. Consequently, other threads will always fail
to steal due to lack of available tasks.

fail to steal due to no

extra available regions

on thrd 0’s stack

region 0

region 0destination:

region 1

region 0

region 2

region 1

region 3

region 2

obj

0

obj

1

obj

2

obj

3

dcount: 0 1 1 1

thrd 0 thrd 1

region

live object

Figure 3: An example of dependency chains, the cul-
prit for poor thread utilization

3.2 Compaction Efficiency
Memory-intensive applications like Spark have a keen de-
mand for memory resources and request tens or hundreds
of gigabytes for their Java heaps, which introduces tens of
thousands of destination regions during full GC. To process
such a number of regions without inducing large pauses, the
compaction efficiency must be greatly optimized.
We have used Spark as an example of memory-intensive

applications to study their memory behaviors. A key obser-
vation is that applications on Spark are usually based on
huge datasets, which generate many large arrays that can
easily fill up a single heap region. If those arrays remain alive
during a full GC phase, regions containing them will become
dense regions and thereby do not require compaction. The
dense regions are dispersed throughout the whole heap, so
many of them cannot benefit from the dense prefix optimiza-
tion in PSGC and thus suffer from unnecessary compaction.
Our evaluation results show the average proportions of des-
tination regions with 100%, 95%, and 90% density but out
of the dense prefix are 31.2%, 37.0%, and 37.2% respectively
in Spark (running the page rank application with a 20GB
heap). The results suggest great optimization potential for
compaction efficiency even with a dense prefix.

4 OPTIMIZATIONS
As analyzed in Section 3, there are two major performance
issues in full GC: limited thread utilization due to chained
region dependencies and inefficient compaction for dense
regions. To resolve these problems, we introduce shadow
regions and region skipping in this section.

4.1 Shadow Region
4.1.1 Basic Idea. The goal of the shadow region optimiza-
tion is to allow threads to steal unavailable regions. Specifi-
cally, when a GC thread encounters stealing failure, it will
turn to unavailable regions rather than spin or sleep. Since
an unavailable region still contains live objects and cannot

APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea Haoyu Li, Mingyu Wu, Haibo Chen

region 0

region 0destination:

region 1

region 0

region 2

region 1

region 3

region 2

obj

0

obj

1

obj

2

obj

3

dcount: 0 1 1 1

thrd 0 thrd 1

region

live object

shadow

region

1.allocate

2.fill3.copy

back

4.region 2 turns

available

Figure 4: An example on how shadow regions resolve
dependency chains

serve as a destination for the moment, the GC thread needs
to allocate a shadow region as its substitute and directly
copy live objects into the shadow one. Live objects within
the shadow region will be copied back once the destination
count of the corresponding stolen region reaches zero.
Figure 4 shows an example of how shadow regions help

optimize dependency chains. Suppose initially thread 0 gets
region 0 while thread 1 has an empty stack. When both
threads start working, thread 1 will try to steal from thread
0 but fail since the only available region is being processed
by thread 0. With our optimization, thread 1 now can turn
to unavailable regions instead of remaining idle. If thread
1 chooses region 1, it will allocate a shadow region for it
(the dashed rectangle in Figure 4) and start to copy live
objects from region 1’s source, i.e., region 2. Once it has
filled the shadow region, region 2 becomes available and
can be exploited as a destination for other ones (region 3
in this example). Data within the shadow region will be
copied back to region 1 as soon as it becomes available. This
design improves the success rate of work stealing and thereby
achieves better thread utilization.

4.1.2 Implementation. We implement shadow regions as a
complement to work stealing. GC threads allocate a shadow
region each time when they encounter stealing failure, and
only become idle if they cannot find unavailable regions any-
more (i.e. nearly all destination regions throughout the heap
have been processed). In our implementation, a GC thread lin-
early scans the heap from its last processed region, picks the
first unavailable one, and creates a shadow region for further
processing. Since multiple GC threads may simultaneously
search the heap for region processing, we introduce a slot for
each region, and GC threads leverage atomic Compare-And-
Swap (CAS) instructions to write their identifiers into the
slot to mark the corresponding region as being processed.
Those atomic instructions guarantee that each destination
region is processed exactly once by GC threads, and they are

cheap compared to other synchronization primitives such as
locks.
The shadow region optimization greatly improves the

thread utilization but at the sacrifice of additional memory
overhead and data locality. A naive implementation is to al-
locate a new shadow region each time a GC thread attempts
to steal an unavailable region. However, this strategy may
consume too much memory, and the write latency of newly
allocated shadow regions is observably slower than that of
heap regions due to worse data locality. To this end, we
choose to reuse shadow regions with a LIFO region stack to
reduce memory consumption and improve locality. In our
evaluation, this design uses on average 4.96% extra memory
and takes 7.02% more time to fill up shadow regions than
normal ones. As a comparison, the naive allocation policy re-
sults in 97.79% extra memory consumption and 54.97% more
heap filling time for shadow regions on average. Actually,
the memory overhead can be further mitigated by reusing
idle heap regions in young space, which we leave to future
work.

The shadow region optimization also introduces additional
data copying from shadow regions back to heap regions.
Nevertheless, since the objects in a shadow region are already
compacted and have references updated, the extra copying
operation could be done by a single memory copy instruction,
which only takes up 3.5% of the region task execution time
on average.
It is possible to apply more sophisticated heuristics to

maximize the benefit of shadow regions. For example, GC
threads can priorly choose a region heavily depended by
other ones so as to generate available regions as many as
possible for other threads to steal. This design indeed reduces
the usage of shadow regions to avoid additional overhead, but
it may also introduce heavy computation and more metadata
maintenance. Therefore, we decide to exploit the previously
mentioned mechanism due to its satisfying efficiency.

4.2 Region Skipping
4.2.1 Basic Idea. The basic idea of region skipping is to
avoid data movement for dense regions. To achieve this goal,
we need to find out all the dense regions and skip over them
when establishing mappings between destination and source
regions in the summary phase. Those regions will not be
moved in the subsequent compacting phase, and the com-
paction efficiency can be boosted if a considerable number
of regions is skipped.

4.2.2 Implementation. For simplicity, we only skip over re-
gions where objects are all alive in our implementation. Fur-
thermore, regions at the end of the heap must be moved
forward regardless of their density to avoid very large frag-
mentation.

Analysis and Optimizations of Java Full Garbage Collection APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea

region 0 region 1 region 2 region 3

obj

0

obj

1

obj

2

obj

3

obj 3’s dest_addr

region 0 region 1 region 2 region 3

obj

0

obj

1

obj

2

obj 3’s dest_addr

region 0 region 1 region 2 region 3

obj

0

obj

1

obj

2

y

obj 3’s dest_addr

x

region 0 region 1 region 2 region 3

obj

0

obj

1

obj

2
yx

obj

3

d. copy piece x and piece y to
heap end to assemble obj 3

b. directly copying obj 3 to
dest_addr will corrupt obj 1

a. the gap between dest_addr
and obj 1 isn’t enough for obj 3

c. split obj 3 to pieces
around dense regions

obj

3’

heap end

Figure 5: An example on handling overflowing objects

The major challenge we encountered is that some moved
objects may overlap with dense regions during compaction
and cause data corruption. As Figure 5.a shows, object 3 is
moving to its destination dest_addr in region 0 whose re-
maining free space is not enough. If the copy really happens,
object 3 will overwrite dense region 1 and corrupt object 1
(illustrated in Figure 5.b). We refer objects like object 3 as
overflowing objects. To avoid such dangerous situations, we
split overflowing objects into pieces around dense regions
during compaction (Figure 5.c), and copy all pieces to the end
of the heap to assemble overflowing objects after compaction
(Figure 5.d). Since PSGC doesn’t allow free space between
live objects, we need to fill dummy objects into these pieces
after processing overflowing objects. This solution is feasible
and straightforward, but it requires extra copying for over-
flowing objects. In our evaluation, overflowing objects are
common in applications that skip many regions. For example,
Spark generates about 150 overflowing objects on average
for every full GC phase. To mitigate the overhead of handling
overflowing objects, we assign them to different GC threads
to process them in parallel. As a result, the overhead gets
reduced from 17.1% to 6.7% of the GC time.

5 EVALUATION
We have implemented our optimizations on OpenJDK 8u102-
b14 with approximately 3000 lines of code. The evaluation
is conducted on a machine with dual Intel ®XeonTM E5-
2618L v3 CPUs (16 cores) with 64G DRAM. As a bench-
mark, we exploit various applications from the DaCapo [1],
SPECjvm2008 [14] and JOlden [4] suites, as well as Spark2, a
memory-intensive large-scale data processing engine. Some
applications in those benchmarks have a limited memory
budget and never trigger a full GC, so we have excluded
them. The maximum heap size for each chosen application is

2We run a pagerank application in Spark 2.3.0 in the local mode, with
a dataset consisting of a graph with 5 million edges sampled from the
Friendster social network[13].

Benchmark Suite Heap size (GB)
crypto.aes SPECjvm2008 1

scimark.fft.large SPECjvm2008 4
serial SPECjvm2008 2

xml.validation SPECjvm2008 0.5
derby SPECjvm2008 2

tradebeans DaCapo 0.5
tradesoap DaCapo 0.5
perimeter JOlden 1
bisort JOlden 1
mst JOlden 1

treeadd JOlden 1
tsp JOlden 1

voronoi JOlden 1
health JOlden 1

pagerank Spark 20
Table 1: Benchmark heap size

 0

 1

 2

 3

 4

 5

crypto.aes

scim
ark.fft.large

serial

xm
l.validation

derby

tradebeans

tradesoap

perim
eter

bisort

m
st

treeadd

tsp
voronoi

health

Spark

N
o
rm

a
liz

e
d
 F

u
ll

G
C

 T
h
ro

u
g
h
p
u
t

OpenJDK 8 Skip Shadow+Skip OpenJDK 9

Figure 6: Full GC throughput improvement

listed in Table 1. All results (except Figure 7) are the average
of five runs.

5.1 Full GC Throughput Improvement
The performance of full GC is evaluated by GC throughput,
which is computed by the heap size before compaction di-
vided by GC execution time. We use vanilla OpenJDK 8 as
our baseline. To understand the effects of the two optimiza-
tion techniques respectively, we also provide the throughput
with only region skipping enabled.

As shown in Figure 6, full GC throughput is improved in
all benchmarks but crypto.aes and xml.validation. In those
improved cases, the throughput improvement ranges from
1.5X (serial) to 4.5X (perimeter), and the average of all bench-
marks is 2.6X. Specifically, region skipping mainly works on
serial, Derby, trade, and Spark because these applications
create many dense regions at runtime while others do not.

APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea Haoyu Li, Mingyu Wu, Haibo Chen

Region skipping even slightly downgrades GC performance
in crypto.aes, xml.validation, and voronoi, as the extra cal-
culating and copying overhead offsets its benefit. To avoid
such performance loss, we have implemented an adaptive
policy to enable region skipping only when over one-third
of destination regions are dense regions.
On the other hand, the shadow region improves the full

GC throughput for most benchmarks except for crypto.aes,
serial, xml.validation, and Spark, as these applications origi-
nally achieve satisfying thread utilization, which leaves little
room for optimization. Since the dependencies among re-
gions form a dependency graph, we have used normalized
critical path length, which is calculated by the length of the
longest dependency chain in the graph divided by the num-
ber of regions, to describe the difference between Spark and
other benchmarks. In our test, the normalized length of the
critical path is less than 0.05 for these four applications. As
a comparison, the normalized length for Derby is 0.46. This
metric suggests that they are hardly affected by chained
dependencies compared with Derby.

We also provide the evaluation results of vanilla OpenJDK
9, into which Yu’s work[18] has been merged. OpenJDK 9 is
a newer version than OpenJDK 8, but it is not a long-term-
support (LTS) version and not so welcomed as OpenJDK 8.3
As illustrated in Figure 6, we achieve on average 2.0X higher
full GC throughput than vanilla OpenJDK 9.
Lastly, we have also evaluated the thread utilization for

Derby to compare that in Figure 2. As Figure 7 indicates, all
threads spend most of the time working on destination (or
shadow) regions, and the average thread utilization reaches
95.3%, which is 11.9X of that without shadow region opti-
mization. Furthermore, the thread utilization in OpenJDK 9 is
still unsatisfying (about 7.7% for Derby), so our optimizations
are still workable for it.

0

25

50

75

100

0 5 10 15
Thread Number

E
xe

c
u

ti
o

n
 t

im
e

 (
m

s
)

Figure 7: Optimized thread utilization for Derby

3In our evaluation, Spark cannot run with OpenJDK 9, so the corresponding
result is missing in Figure 6.

 0

 0.2

 0.4

 0.6

 0.8

 1

crypto.aes

scim
ark.fft.large

serial

xm
l.validation

derby

tradebeans

tradesoap

perim
eter

bisort

m
st

treeadd

tsp
voronoi

health

Spark

N
o
rm

a
liz

e
d
 A

p
p
lic

a
ti
o
n
 E

x
e
c
u
ti
o
n
 T

im
e OpenJDK 8 Optimized

Figure 8: Application performance improvement

5.2 Application Performance
Improvement

We have also evaluated the overall application performance
by comparing execution time, as shown in Figure 8. To sum-
marize, we achieve application performance improvement
for 58.4% at best and 18.2% on average. Generally, applica-
tions with larger working sets benefit more from our opti-
mizations on full GC. For example, Spark exploits the Java
heap as a data cache for the datasets, which will occupy
a significant portion of the memory space and thereby in-
duce relatively frequent full GC phases. Consequently, Spark
gains 15% speedup thanks to our optimizations. On the con-
trary, applications like Derby have relatively small working
set and induce few full GC phases, so the improvement on
application performance is trivial.

6 RELATEDWORK
GC analysis and optimizations. Garbage collection is es-
sential to Java runtime and has been analyzed and optimized
for years. Gidra et al. [6, 7] provide a comprehensive anal-
ysis on PSGC and uncover several problems like NUMA-
unawareness and heavily contended locks. Suo et al. [15]
find that the lack of coordination between the Linux sched-
uler and the Java thread manager may result in scalability
problems. Nguyen et al. [9] find a large amount of unnec-
essary object copying in big-data workload during GC and
eliminate it with a new collector. Bruno et al. [2, 3] have a
similar observation but use pre-tenuring to solve the prob-
lem instead. Yu et al. [18] point out an efficiency problem
in the destination calculation during the compacting phase
in full GC and design a calculation cache to optimize it out.
Those solutions are orthogonal to our work, and some of
them can be integrated with ours for larger performance
improvement.

Analysis and Optimizations of Java Full Garbage Collection APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea

Other collectors. Recently there is growing interest in
allowing GC threads and mutators to run simultaneously
for better application latency [5, 11, 16]. Although those
concurrent collectors reduce or even eliminate STW pauses,
they may still need a final full GC phase to avoid the case
where the speed of allocation is much faster than that of
the collection. For example, G1GC [5], a new generation
of concurrent collector in HotSpot, contains full GC and
recently has been optimized to support multi-threading [10]
to improve performance. Therefore, our optimizations on
full GC are useful and can be adapted to other collectors.
Moreover, the idea of generational collections and full GC is
also adopted in other language runtimes like CLR [12] and
V8 [8], so our optimizations may also be useful for them.

7 CONCLUSION
Full GC is a costly phase in Java garbage collectors whichmay
induce prohibitive application pauses especially for large
heaps. This paper analyzes full GC in the default HotSpot
collector, spots major sources of inefficiency, and proposes
optimizations with satisfying performance improvement.

REFERENCES
[1] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang,

Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z Guyer, et al. 2006. The DaCapo bench-
marks: Java benchmarking development and analysis. In Proceedings
of the 21th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, October 22-26, 2006,
USA. ACM, 169–190.

[2] Rodrigo Bruno and Paulo Ferreira. 2017. POLM2: automatic profiling
for object lifetime-aware memory management for hotspot big data
applications. In Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference. ACM, 147–160.

[3] Rodrigo Bruno, Luís Picciochi Oliveira, and Paulo Ferreira. 2017. NG2C:
pretenuring garbage collection with dynamic generations for HotSpot
big data applications. In Proceedings of the 2017 ACM SIGPLAN Inter-
national Symposium on Memory Management. ACM, 2–13.

[4] Brendon Cahoon and Kathryn S McKinley. 2001. Data flow analysis for
software prefetching linked data structures in Java. In Parallel Architec-
tures and Compilation Techniques, 2001. Proceedings. 2001 International
Conference on. IEEE, 280–291.

[5] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. 2004.
Garbage-first garbage collection. In Proceedings of the 4th international
symposium on Memory management. ACM, 37–48.

[6] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. 2013.
A study of the scalability of stop-the-world garbage collectors on
multicores. In Proceedings of the eighteenth international conference on
Architectural support for programming languages and operating systems.
ACM, 229–240.

[7] Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan
Nguyen. 2015. NumaGiC: a Garbage Collector for Big Data on Big
NUMA Machines. In Proceedings of the 20th International Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM, 661–673.

[8] Google. 2018. Chrome V8. https://developers.google.com/v8/.

[9] KhanhNguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsa-
dat Alamian, and Onur Mutlu. 2016. Yak: A high-performance big-
data-friendly garbage collector. In Proc. the 12th USENIX Conference
on Operating Systems Design and Implementation.

[10] OpenJDK. 2018. JEP 307: Parallel Full GC for G1.
http://openjdk.java.net/jeps/307.

[11] Erik Österlund and Welf Löwe. 2016. Block-free concurrent GC: stack
scanning and copying. In Proceedings of the 2016 ACM SIGPLAN Inter-
national Symposium on Memory Management. ACM, 1–12.

[12] Jeffrey Richter. 2006. CLR via c#. Vol. 4. Microsoft Press Redmond.
[13] SNAP. 2014. Friendster. http://snap.stanford.edu/data/com-

Friendster.html.
[14] SPEC. 2008. SPECjvm2008. https://www.spec.org/jvm2008/.
[15] Kun Suo, Jia Rao, Hong Jiang, and Witawas Srisa-an. 2018. Character-

izing and optimizing hotspot parallel garbage collection on multicore
systems. In Proceedings of the Thirteenth EuroSys Conference. ACM,
35:1–35:15.

[16] Gil Tene, Balaji Iyengar, and Michael Wolf. 2011. C4: The contin-
uously concurrent compacting collector. In Proceedings of the 10th
international symposium on Memory management. ACM, 79–88.

[17] David Ungar. 1984. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. In ACM Sigplan notices,
Vol. 19. ACM, 157–167.

[18] Yang Yu, Tianyang Lei, Weihua Zhang, Haibo Chen, and Binyu Zang.
2016. Performance Analysis and Optimization of Full Garbage Col-
lection in Memory-hungry Environments. In Proceedings of the 12th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments. ACM, 123–130.

[19] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: cluster computing with working
sets. In Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing.

[20] Paul C Zikopolous, George Baklarz, and Dan Scott. 2005. Apache
derby/IBM cloudscape. Prentice Hall PTR.

	Abstract
	1 Introduction
	2 Background
	2.1 Parallel Scavenge
	2.2 Full GC algorithm

	3 Analysis
	3.1 Thread Utilization
	3.2 Compaction Efficiency

	4 Optimizations
	4.1 Shadow Region
	4.2 Region Skipping

	5 Evaluation
	5.1 Full GC Throughput Improvement
	5.2 Application Performance Improvement

	6 Related Work
	7 Conclusion
	References

