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Abstract
Despite recent advances in tensor compilers, it often takes

hours to generate an efficient kernel for an operator, a
compute-intensive sub-task in a deep neural network (DNN),
on various accelerators (e.g., GPUs). This significantly slows
down DNN development cycles and incurs heavy burdens
on the development of general kernel libraries and custom
kernels, especially for new hardware vendors. The slow com-
pilation process is due to the large search space formulated by
existing DNN compilers, which have to use machine learning
algorithms to find good solutions.

In this paper, we present ROLLER, which takes a differ-
ent construction-based approach to generate kernels. At the
core of ROLLER is rTile, a new tile abstraction that encap-
sulates tensor shapes that align with the key features of the
underlying accelerator, thus achieving efficient execution by
limiting the shape choices. ROLLER then adopts a recursive
rTile-based construction algorithm to generate rTile-based
programs (rProgram), whose performance can be evaluated
efficiently with a micro-performance model without being
evaluated in a real device. As a result, ROLLER can generate
efficient kernels in seconds, with comparable performance
to the state-of-the-art solutions on popular accelerators like
GPUs, while offering better kernels on newer accelerators
like IPUs.

1 Introduction

Deep neural networks (DNN) have been used extensively in
intelligent tasks like computer vision and natural language
understanding. As DNN computation is known for its com-
plexity, the compute intensive sub-tasks (e.g., matrix multipli-
cation) in a DNN model are abstracted as operators and im-
plemented as kernels, executed on modern accelerators (e.g.,
GPUs, TPUs) to speed up the computation. DNN compilers
play an important role in producing high-performance kernels
for the development of DNN models. It reduces the burden of

*Work is done during the internship at Microsoft Research.

(often hand-crafted) library-based kernel development (e.g.,
cuDNN [6] and cuBLAS [2]) and provides a flexible way to
cover the fast-growing number of custom operators, which
libraries struggle to catch up with and optimize, a growing
pain especially for new hardware vendors.

DNN compilers treat a DNN operator as tensor compu-
tation, which is then translated into nested multi-level loops
iterated over the computation on each tensor element along dif-
ferent axes (dimensions). Compiler optimization techniques
like loop partitioning/fusion/reordering are applied to nested
loops. Due to the inherent complexity of loop rearrangement,
it is a combinatorial optimization problem to find a good
solution among a large search space, often with millions of
choices. Therefore, advanced compilers [15, 33, 35] propose
to adopt machine learning algorithms to search for a good
solution. This usually takes thousands of search steps, each
evaluated in a real accelerator, to find a reasonable solution.
Our own experience shows that tuning an end-to-end DNN
model using state-of-the-art compilers [15, 33] often requires
days, if not weeks. The tuning time may be even longer if
the DNN model runs on less mature accelerators (e.g., AMD
GPU or Graphcore IPU [4]) (§2). To make the matter worse,
a DNN model need to re-compile whenever its structure, op-
erator types, tensor shapes and configurations are changed.
This is often required when trying different configurations
in model training or inference. Given that an operator could
have arbitrary input shapes and configurations, such compi-
lation could significantly slow down the overall DNN model
development cycle.

In this paper, we propose ROLLER, a deep learning tensor
compiler that addresses the problem in a radically different
way. ROLLER is built on the following insights. First, instead
of multi-level nested loops, ROLLER treats the computation
in a DNN operator as a data processing pipeline, where data
tiles (a fraction of a tensor) are moved and processed in an
abstracted hardware with parallel execution units and multi-
layer memory hierarchy. The goal of generating efficient ker-
nel programs then becomes that of improving the throughput
of the pipeline.
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Second, for an accelerator to execute efficiently, the shape
of a data tile should align with the hardware characteristics,
including memory bank, memory transaction length, and min-
imum schedulable unit (e.g., warp size in GPUs). To achieve
the full alignment across multiple hardware features, the avail-
able tile shapes are limited. More importantly, with alignment
as a constraint, to maximize the throughput of a pipeline, one
only needs to construct an aligned tile shape that saturates
the execution unit of the accelerator. This construction pro-
cess is significantly more efficient than solving the original
unconstrained combinatorial optimization problem.

Third, the performance of an aligned pipeline is highly pre-
dictable. Key performance metrics under the aligned pipeline
(e.g., memory throughput) can be derived from the hardware
specification (or through micro-benchmarking). This greatly
simplifies the performance evaluation under various aligned
configurations, eliminating the need of a complex cost model
and/or expensive hardware-based evaluation on each aligned
configuration.

With these insights, ROLLER proposes rTile, a new ab-
straction that encapsulates data tile shapes that align with
the key features of the hardware accelerator and the input
tensor shapes (§3.1). A data processing pipeline can then be
described as an rTile-based program (a.k.a. rProgram) com-
posed by three interfaces: Load, Store, and Compute, acted
against rTile. To construct an efficient rProgram, ROLLER fol-
lows a scale-up-then-scale-out approach. It first performs the
scale-up process, which adopts a recursive rTile-based con-
struction algorithm (Figure 8) to gradually increase the size
of the rTile shape to construct an rProgram that saturates a
single execution unit of the accelerator (e.g., an SM, a stream-
ing multi-processor in a NVIDIA GPU). It then performs
the scale-out process, which simply replicates the resulting
rProgram to other parallel execution units, thanks to the ho-
mogeneity of both the computation pattern of deep learning
and the parallel execution units in an accelerator.

ROLLER can evaluate the performance of different rTiles
without significant overheads. The peak (saturate) compute
throughput can simply be measured once per operator type.
And due to the alignment, other key performance factors
like memory pressure of an rTile can be derived analytically
from hardware specifications. This leads to an efficient micro-
performance model, avoiding the expensive online profiling
on each configuration required by existing DNN compilers,
thereby significantly speeding up the compilation process. In
addition, due to the strict alignment requirements, the recur-
sive construction process can produce a few desired rTiles
(and rProgram) quickly. Combined, ROLLER can generate
efficient kernels in seconds.

We have implemented ROLLER on top of TVM [15] and
Rammer [26], and open-sourced the code1. Our evaluation
on 6 types and 119 popular DNN operators from several

1https://github.com/microsoft/nnfusion/tree/osdi22_artifact/artifacts
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Figure 1: Access pattern of different tile shape. Matrix multi-
plication, Cm,n = Am,k ×Bk,n.

mainstream DNN models shows that ROLLER can generate
highly-optimized kernels in seconds, especially for large ex-
pensive custom operators. This achieves three orders of mag-
nitude improvement on compilation time. The performance of
ROLLER-generated kernels is comparable to and often better
than the state-of-the-art tensor compilers and even vendor-
provided DNN libraries. With the three rTile-based interfaces
(Load, Compute, Store) describing an rProgram, ROLLER
can easily adapt to different accelerators like AMD GPU and
Graphcore IPU. ROLLER has been used to develop custom
DNN kernels internally and shown to significantly speed up
our development cycle. It offers potentially disruptive oppor-
tunities to new players in the compute accelerator market,
who previously have to spend significant engineering efforts
on efficient kernels.

2 Motivation and Key Observations

Excessive compilation time. Our own experience in a set of
DNN operators (detailed setting in §5) shows that the average
compile time for a single operator using Ansor [33], a state-
of-the-art tensor compiler, is 0.65 hours. Among them, one
convolution operator in ResNet model takes 2.17 hours. A
DNN model may contain hundreds of operators, thus it easily
takes days to compile the model. For example, to compile
a NASNet model (§5), we reach only 32% of the overall
searching progress after tuning for 41.8 hours. Our experience
also shows the compilation speed is even worse on less mature
devices, the compiler takes much longer time for a kernel.
Observation and insights. We observe that there exists a
different view to the computation of an DNN operator. Tak-
ing matrix multiplication (MatMul), Cm,n = Am,k ×Bk,n, as an
example to illustrate our observation. Unlike existing com-
pilers that treat MatMul as a 3-level loop iterated over each
axis m,k,n, the computation process is also a data processing
pipeline. One can Load each sub-matrix (i.e., a tile) from A
and B, Compute the two tiles, and Store the resulting tile
of C to memory. Thus, the performance of the computation
depends on how fast one can move the data tiles in the Load-
Compute-Store pipeline.

The key factor affecting the performance in all steps in the
pipeline is the shape of tiles and the corresponding layout
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Figure 2: System overview of ROLLER.

in the one-dimension memory space. Figure 1(a) illustrates
the computation of one element in C (in the top part) and the
memory accessing pattern (in the bottom part). Assuming all
matrices stored in a row-major layout, loading a column from
B causes strided accesses in length of 1. Suppose the memory
transaction length is 4, there will be 3/4 of total redundant
data reads. Thus, the data tile shape should align with the
memory transaction length for efficient memory access. In
Figure 1(b), when computing B in the granularity of 1×4 tile,
there will be no memory bandwidth waste. Besides memory
alignment, the tile shape should also align with the hardware
execution unit, e.g., the parallel threads number, to avoid waste
in computing cycles. Moreover, the tile shape also affects
data reuse opportunities due to caching, a common feature in
modern accelerators. For example, Figure 1(a) needs 2mnk
data reads when computing a 1×1 tile each time. However,
in Figure 1(b), only 1.25mnk reads are required, as one read
from A can be reused 4 times. If setting the tile size along M
dimension to 4×4, as shown in Figure 1(c), the total reads can
be reduced to 0.5mnk. A 10× improvement over Figure 1(a).

These observations motivate ROLLER, a system that iden-
tifies the aligned tile shapes and constructs an efficient tile
processing pipeline to improve the end-to-end throughput.

3 System Design

Figure 2 shows the system overview. ROLLER takes an op-
erator described as a tensor expression (§3.1). The expres-
sion is generated by users or from a graph-level DNN com-
piler [15, 26, 33], which might further fuse multiple operators
into a single expression. ROLLER extracts the tensor shapes
from the tensor expression and leverage hardware specifi-
cations to construct rTiles, i.e., a hardware-aligned building
block (§3.1). Based on rTiles, ROLLER proposes a scale-up-
then-scale-out recursive construction algorithm to generate
efficient tensor programs (named rProgram) that describes the
data processing pipeline (§3.2). When generating rProgram,
the construction algorithm identifies good rTile configurations
by evaluating the performance of a constructed rProgram

class rTile {
TensorExpr expr;
TileShape shape;
TileShape storage_padding;
vector <TileShape > GetInputDataTiles();
vector <TileShape > GetOutputDataTiles();

};

Figure 3: The data structure of rTile.

rTile.shape: [i, j, k]

DataTile: [i, k] DataTile: [k, j]

ComputeTile: [i, j, k]

DataTile: [i,j]

Figure 4: The data tiles and computing tile inferred by an
rTile for MatMul expression.

through a micro-performance model. It is built on top a device
described through a hardware abstraction layer exposing only
rTile-related interfaces: Load, Compute, and Store (§3.3).
The constructed rProgram is finally realized through a code
generator to emit the final kernel code corresponding to the
specific device.

3.1 Tensor Expression and rTile
ROLLER takes input of a tensor computation as an index-

based lambda expression, i.e., tensor expression [15, 27]. It
describes how each element in the output tensor is computed
based on the corresponding elements in the input tensors. For
example, a MatMul operator with output tensor C of the shape
M×N can be expressed as,

C = compute((M,N), lambda i,j:sum(A[i,k]*B[k,j])),

where the element indexed by (i, j) in C is computed by a
sum reduction over the elements in row i of A and column j
of B, and k is the reduction axis. Such an expression can cover
the majority of operators in DNN models and is widely used
in existing DNN compilers including TVM [15], Ansor [33],
and FlexTensor [35].

ROLLER introduces RollingTile (rTile for short) as the
basic computing unit to compose a tensor computation. As
shown in Figure 3, an rTile encapsulates a multi-dimensional
tile shape defined along each loop axis of a given tensor ex-
pression expr. Given shape and expr, an rTile can statically
infer the involved input and output data tiles. For example,
a tile shape [4,4,2] along axes i, j,k denotes an rTile for the
above MatMul expression, where each rTile loads a 4×2 data
tile from A and a 2×4 tile from B, conducts total 4×4×2
multiply-add computations, and stores a 4×4 data tile to C,
as illustrated in Figure 4.
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Figure 5: Illustration of (a) transaction aligned memory load
and (b) bank conflict-free padding.

A unique property of an rTile is that it must align with both
the underlying hardware features and the tensor shapes in a
given tensor expression. All these alignments are controlled
by the rTile shape and the storage_padding fields in Figure 3,
which represent the logical form and the physical layout of
an rTile, respectively. We elaborate the detailed requirements
of alignment next.
Alignment with the hardware execution unit. First, the
shape of an rTile must align with the parallelism of the exe-
cution unit it runs on. For example, if running on a warp of
threads in a GPU, the size of shape in the rTile should be a
multiple of the warp size, e.g., 32, for maximal computing
efficiency. When using TensorCore in NVIDIA GPUs, the
rTile shape should be a multiple of 16×16×16. Similarly, an
rTile executed on a streaming multi-processor (SM) should
align its size as a factor of execution unit number on the SM.
Alignment with memory transaction. Second, a data tile’s
shape should align with the length of memory transaction for
optimal memory access. Specifically, for each data tile of an
rTile, we should guarantee that its leading dimension (e.g., the
inner-most dimension in a row-major tensor) is a multiple of
the memory transaction length, as illustrated in Figure 5(a). In
ROLLER, tensors are allocated in a cache-aligned way. Thus,
an rTile can avoid any wasted transaction read, as its shape is
aligned with the memory transaction.
Alignment with memory bank. Third, the memory layout
of a data tile should align its stride with the memory bank to
avoid read conflicts. For example, a [3,4] data tile is kept in
the memory across 4 banks and is read by an upper-memory-
layer tile with a shape of [3,1], as shown in Figure 5(b). A
naive approach that stores all the [3,1] values in the same
bank will result in conflicted loading. rTile avoids such in-
efficiency by padding a data tile. Given a data tile with a
leading dimension of size N, which is read by another tile
with a leading dimension of size n, we add a padding size of
(BL−N%(BL)+L⌈n/L⌉)%(BL) along N when storing this
tile, where B and L are the bank number and the bank width,
respectively. The padding sizes along each axis are calculated
and stored in the storage_padding field in Figure 3. For the
case in Figure 5(b), by a padding size of 1, all the [3,1] values
are distributed in different banks and can be read efficiently.

Alignment with tensor shape. Finally, an rTile’s shape
should align with the tensor shape of an input tensor expres-
sion. Otherwise, the computation cannot be evenly partitioned
by the rTile, wasting compute resources or incurring heavy
boundary checking overheads. A simple solution is to add
a padding size Pi along a tensor dimension i with size of Ni,
which makes Ni+Pi a multiple of the rTile shape’s dimension
size at axis i. However, a large padding might waste computa-
tion. ROLLER therefore restricts tensor padding under a range
ε, where an rTile’s shape dimension size Si has to satisfy that
Si−Ni%Si

Ni
≤ ε, where Ni is the tensor size at dimension i. This

ensures the wasted percentage of computation is bounded by
ε. With this restriction, we can enumerate all the valid rTile
shapes that satisfy this condition.
Deriving all rTiles. Given the above alignment requirements,
for a specific tensor expression and hardware device, ROLLER
incrementally derives all the conforming rTiles using the
following interface:
vector<int> GetNextAlignedAxisSize(rTile T, Dev d),

which returns the next aligned size for each axis in the shape
of rTile T given the specific device specification d. This is
calculated by gradually increasing the dimension size along
each axis until it satisfies all the alignment requirements.
The rTile abstraction allows ROLLER to be extended to sup-
port new alignment requirements (e.g., new hardware fea-
tures). This is achieved by adding new alignment rules to the
GetNextAlignedAxisSize interface.
Calculating data reuse score. An interesting property of
rTile is that we can implicitly control the memory traffic by
adjusting its shape. Increasing the rTile size usually brings
more data reuse opportunities at the cost of occupying more
memory space. Given an rTile T and its next aligned size in
each axis, we can calculate the data reuse score Si for axis
i by Si =

Q(T )−Q(T ′
i )

F(T ′
i )−F(T ) , where T

′
i is a newly enlarged rTile by

replacing the dimension size at axis i with the next aligned size
from GetNextAlignedAxisSize. Functions Q(T ) and F(T )
calculate the memory traffic and memory footprint when the
computation is executed in the granularity of T , which can
be directly inferred based on the given tensor expression and
hardware memory specification (§3.3). A larger Si means
better cost-efficiency, i.e., more memory traffic can be saved
with the same memory usage. The memory reuse score plays
a critical role in constructing an efficient rProgram (using
rTiles), as shown in the next subsection.

3.2 Tensor Program Construction

rTile program. Given rTile and the hierarchical memory
structure of modern accelerators, a tensor computation can
be naturally treated as a streaming data processing pipeline.
The computation loads data tiles (specified in rTile) from the
lowest memory layer through the memory hierarchy to the
highest layer, performs rTile computation on the execution
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for L1_iter in L2_rtile.split(L1_rtile):
L1_input_tiles = Load(L1_iter); //L2 to L1
for L0_iter in L1_rtile.split(L0_rtile):

L0_input_tiles = Load(L0_iter) //L1 to L0
L0_out_tile = Compute(L0_input_tiles);
Store(L0_out_tile , L2_out_tile);//L0 to L2

Figure 6: The pseudo code of an rProgram on a device with a
3-layer memory hierarchy (Bottom-up: layer L2 to layer L0).

A

B
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𝐿0

A

B

C

(a)

(c)

rProgram:
Load : L2->L1->L0
Compute: L0
Store: L0->L2
rTile : L1=[4, 8, 4], L0= [2, 2, 1]
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𝐿1

𝐿2

Compute:[2, 2, 1]

[4,8][4,4] 

[2,1] [1,2]

C

[2,2]

Figure 7: ROLLER computation model. (a) An rTile program;
(b) rTiles on matrix multiplication; (c) Execution of the rTile
program on a hardware memory hierarchy.

units of the accelerator, and stores the resulting data tiles back
to the lowest memory. For each memory layer, a specific rTile
is defined to align with the characteristics of this memory
layer. Thus, ROLLER describes tensor computation as a data
processing pipeline with a hierarchical rTile configuration,
which is called an rTile program (i.e., rProgram).

Figure 6 shows an rProgram on a device with three memory
layers (L0, L1 and L2). The rProgram is described by the rTile
at each layer and the rTile instructions (i.e., Load, Store, and
Compute) at each memory layer. Figure 7(a) shows a MatMul
rProgram illustrated in Figure 7(b). Figure 7(c) illustrates how
the rProgram is mapped to each memory layer of a device.
Specifically, each time it loads a [4,4] data tile in A and a
[4,8] tile in B from memory L2 to L1; and then it loads the
data tiles from memory L1 to memory L0 (i.e., registers) in
shapes of [2,1] and [1,2]. After each Compute, the resulting
[2,2] tile will be directly stored from L0 to L2.

Given a data processing pipeline, the optimization goal of
the corresponding rProgram is to maximize the throughput
of the pipeline. The goal can be translated into three condi-
tions: 1) the computation and memory movement should fully
leverage the hardware features; 2) the throughput should satu-
rate the bottleneck stage; and 3) there needs to be sufficient
parallelism to leverage all the parallel execution units. Thus,
ROLLER proposes the following rProgram construction pol-
icy: first scale-up on one core by constructing a single-core
rProgram to saturate the core’s hardware utilization and then

1 Func ConstructProg(expr:TensorExpr, dev:Device):
2 T = rTile(expr);
3 Results = [];
4 EnlargeTile(T , dev.MemLayer(0), rProg());

5 Func EnlargeTile(T:rTile, mem:MemLayer, P:rProg):
6 if mem.IsLowestLayer()
7 Results.append(P);
8 if (Results.Size() > TopK) Exit();
9 Return();

10 for T ′ : GetNextRTileShapes(T , mem) do
11 if Visited(T ′)
12 Return();
13 if MemFootprint(T ′) > mem.Capacity()
14 P.Add(mem, T );
15 EnlargeTile(T , mem.Next(), P);
16 else
17 if MemPerf(T ′) > MaxComputePerf(T ′.expr)
18 P.Add(mem, T ′);
19 EnlargeTile(T ′, mem.Next(), P);
20 EnlargeTile(T ′, mem, P);

21 Func GetNextRTileShapes(T:rTile, mem:MemLayer)
22 alignedSizes = GetNextAlignedAxisSize(T , mem);
23 SortedRTiles = OrderedMap();
24 for d : T.Dimensions() do
25 T ′ = T .Replace(d, alignedSizes[d]);
26 SortedRTiles.Insert({T ′, DataReuseScore(T ′)});
27 Return SortedRTiles;

Figure 8: ROLLER’s rProgram constructing algorithm
for a single core (e.g., an SM).

scale-out to leverage the multi-core parallelism by replicating
the constructed single-core rProgram.
Scaling up an rProgram. Since the alignment properties
of rTile ensure hardware efficiency, ROLLER can just focus
on maximizing the throughput at each memory layer by con-
structing the right rTile shape. By leveraging the data reuse
score defined in §3.1, the single-core rProgram construction
algorithm starts from an initial rTile and gradually enlarges
it towards the most cost-effective axis in the rTile (i.e., with
the maximum data reuse score). Note that the construction
algorithm does not require an absolute data reuse score, it
just picks the largest one to maximize the throughput. Dur-
ing the process, the memory performance improves until it
hits the computational bound or the maximal memory capac-
ity. The above process repeats for each memory layer from
top to bottom, until a desired rProgram is constructed. Note
that if the data reuse score remains constant for some tensor
expressions, e.g., element-wise operators, ROLLER will just
construct rTiles for the top layer and loads them directly from
the bottom layer memory.

Figure 8 shows the detailed construction algorithm. Given
a tensor expression expr and a target device dev, the algo-
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rithm constructs an initial rTile T at the top memory layer
and enlarges T recursively (EnlargeTile in line 4). At each
step, it enumerates the next larger rTile T ′ that improves the
data reuse score most (GetNextRTileShapes in line 10). If
T ′ hits the memory capacity (line 13) or the data tile load-
ing throughput MemPer f (T ′) exceeds the peak computing
throughput MaxComputePer f (T ′) (line 17), the algorithm
records the current rTile T and goes on to EnlargeTile at
the next memory layer. Otherwise, it continues to enlarge
T ′ at the current layer (line 20). The construction finishes at
the lowest memory layer (line 6), producing one result and
repeating, until it obtains K (e.g., 5-20) rPrograms (to tolerate
the hidden factors affected by the device compiler). Note that
MemPer f (T ′) and MaxComputePer f (T ′) are derived based
on dev, based on the micro-performance model (§3.3).
Scaling out an rProgram. Given the homogeneity of both
the computation pattern of most DNN operators and the par-
allel execution units in an accelerator, ROLLER simply repli-
cates the rProgram constructed on one execution unit to other
units, by uniformly partitioning the computation into rTiles
of the size equals to the lowest layer rTile. We achieve this
by distributing all the partitions evenly to all execution units.
Note that ROLLER prefers to assign the partitions split along
a reduction axis on the same execution unit, as they can share
the reduction results in the higher memory layers. Note that
ROLLER does not assume an rProgram will exclusively oc-
cupy all computing units, the system can explicitly control
the parallelism of a rProgram when scaling out.
Small operator and irregular tensor shape. The scale-out
algorithm inherently favors operators with sufficient paral-
lelism, e.g., where the partition number is significantly larger
than the number of execution units. For a small operator, the
overall performance of the algorithm could suffer from the
low utilization of parallel execution units. In general, this
can be addressed by co-scheduling with other operators in
compilers like Rammer [26], if there exists sufficient inter-
operator parallelism. Otherwise, for each rProgram, ROLLER
will try to shrink its rTiles along the axis that has the smallest
data reuse score to achieve sufficient parallelism. Note that
this enumerating process returns the next aligned tile size
each time just like other alignment rules, which is an efficient
process and incurs negligible costs compared to the overall
construction process.

In addition, a large operator may contain irregular tensor
shapes with small dimensions, whereas ROLLER might not
generate a sufficient number of rPrograms due to the align-
ment requirements. To address this issue, ROLLER transforms
a tensor expression into a canonical form by an axis fusion
pass. Specifically, for all the involved tensors, if there exist
two adjacent axes in one tensor, which are either both existing
and still adjacent or both missing in all other tensors, ROLLER
can safely merge these two axes. For example, an element-
wise operator with the tensor shape [17,11,3] in both input
and output tensors, ROLLER will transform it into the tensor

// compute interface
int Load(T* src, rTile st, T* dst, rTile dt);
int Store(T* dst, rTile dt, T* src, rTile st);
int Compute(TensorExpr e, rTile t, T** args);

Spec GetDeviceSpec(); // Spec query interface

// interfaces of the micro-performance model
size_t MemFootprint(rTile t);
size_t MemTraffic(rTile t);
double MaxComputePerf(TensorExpr expr);
double MemPerf(rTile t);

Figure 9: The interface of ROLLER’s hardware abstraction

shape [561](17× 11× 3) by fusing the three axes. Besides
axis fusion, ROLLER will also try to greedily increase the
parameter ε in the tensor padding mechanism (§3.1) until K
rPrograms have been constructed.

3.3 Efficient Evaluation of an rProgram
In the construction algorithm, ROLLER needs to evaluate the
performance of rProgram. Instead of evaluating the end-to-
end rProgram in a real hardware device, ROLLER only needs
to evaluates the performance of the corresponding rTile, e.g.,
MemPerf and MaxComputePerf in Figure 8.

To this end, ROLLER builds a micro-performance model
against a device described in a hardware abstraction layer
(HAL). The HAL models an accelerator as multiple parallel
execution units with a hierarchical memory layer. The HAL
exposes three rTile-based interfaces: Load, Compute, and
Store (Figure 9). An execution unit is abstracted as an rTile
Execution Unit (TEU), which computes the data tiles through
the Compute interface. Multiple TEUs can be organized as a
group, which Load and Store tiles cooperatively. The HAL
treats different memory layers, e.g., register, shared memory,
DRAM, as an unified type exposing the hardware specifi-
cations that affect the performance of tile movement. The
specifications include memory capacity, transaction lengths,
cache line size, and number of memory banks, which can be
obtained by the GetDeviceSpec interface in Figure 9.
Micro performance model. With the hardware abstraction
layer, ROLLER can easily derive the performance of a rTile
(and hence the rProgram). First, given an rTile, the incurred
memory footprint (including padding) and the memory traf-
fic volume across different layer can be statically inferred
from the rTile’s tensor expression expr and the shape, i.e.,
the MemFootprint and MemTraffic interfaces in Figure 9.
They are used to calculate the data reuse scores and check if
an rTile exceeds the memory capacity. Second, to calculate
MaxComputePerf of an rTile, ROLLER conducts a one-time
profiling to measure the peak compute throughput by aggres-
sively enlarging the compute tiles (e.g., multiple of warp size
in an SM) to saturate the TEU. This performance data is
cached in ROLLER for future query in the construction al-
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gorithm. Finally, for a given rTile, ROLLER also estimates
MemPerf, the performance on loading data tiles from a mem-
ory layer to a higher layer. Given the aligned memory access
in rTile, the latency of loading a regular chunk of data can be
simply modeled by the division of the total traffic to the mem-
ory bandwidth. For the memory layer shared by all TEUs, we
split the bandwidth evenly. For the smaller accessing sizes,
ROLLER also conducts a one-time offline profiling for each
device type and cache the results. It is worth noting that the
micro-performance model only needs to be accurate when the
tile shapes are fully aligned, a key requirement of ROLLER.

4 Implementation

Our implementation of ROLLER is based on TVM [15] and
Rammer [26], two open-source DNN compilers. ROLLER’s
core mechanisms, including expression optimization, con-
struction algorithm, micro-performance model, etc., are imple-
mented with 8K lines of code. ROLLER’s compilation pipeline
is as follows. Its input is an ONNX graph [9] or a TensorFlow
frozen graph [13]. ROLLER first leverages Rammer to con-
duct graph level optimizations (e.g., inter- and intra-operator
co-scheduling). Next ROLLER derives the TVM tensor expres-
sions for each (fused) operator extracted from the optimized
graph, and generates corresponding rProgram by ROLLER’s
construction algorithm, and performs kernel generation. Fi-
nally, the generated kernels are injected to Rammer’s runtime
and generate the end-to-end model code.
Code generation. Given the fixed code structure in an
rProgram (in Figure 6), ROLLER generates the kernel code
through a predefined template, implemented as a TVM sched-
ule with its built-in scheduling primitives. Loading and storing
data tiles at each memory layer are implemented by TVM’s
cache_read and cache_write primitives. Partitioning on
rTile is done through split and fuse. Some primitive rTile
computation is implemented with TVM’s intrinsic API. With
the template, a given rProgram can be directly generated into
device codes, e.g., CUDA kernels.
Tensor padding. ROLLER relies on tensor padding to align
rTiles with tensor shape. In practice, most tensors in the
lowest memory (e.g., DRAM) are allocated by external pro-
gram (e.g., DNN framework), thus we just apply padding
in the upper layer memory (e.g., shared memory). Our ten-
sor padding currently requires the input tensor expression
to specify whether it allows to pad, as well as the default
padding value (e.g., 0 for MatMul operator). For the storage
padding for memory bank alignment, we leverage TVM’s
storage_align primitive to add padding.
Performance profiling. ROLLER implements two profil-
ers: a micro-performance profiler and a kernel profiler. The
former generates device specifications, e.g., memory band-
width, computing throughput, etc., through a set of micro-
benchmarks, which is a one-time offline profiling for each
device type and tensor expression types (regardless of the

tensor shapes). The latter profiles the fastest kernels among
the top K rPrograms and is used for each compilation result
if the K is larger than 1. In practice, the performance of a
specific kernel code is also slightly affected by some device-
compiler and hardware related hidden factors, which ROLLER
can hardly control. These factors include instruction density
of different instruction types, register allocation behaviors,
device compiler optimizations, warp scheduling overhead, etc.
Particularly, on NVIDIA GPUs, ROLLER relies on nvcc [3]
to compile the generated CUDA codes into machine code.
However, nvcc’s proprietary optimizations might undesirably
affect the program execution behaviors. Thus, ROLLER lever-
ages the kernel profiler to quickly evaluate top performing
rPrograms and select the best one. A larger K could generally
increase kernel quality. After evaluating the top 10, 20, and
50 results, our experiences show that top 10 could recall the
optimal results for most cases. Note that ROLLER’s kernel pro-
filer differs from the evaluation process driven by a machine
learning algorithm in previous compilers [15,33,35]. The ML-
based approach usually requires hundreds even thousands of
sequential evaluation steps, while ROLLER only profiles tens
of candidates in parallel. In future, we plan to implement
assembly-level code generation to alleviate the hidden issues
in a high-level device compiler.

ROLLER’s HAL allows us to support different accelerators
easily. User can configure the corresponding HAL for each
device type. ROLLER also provides built-in configurations
for most common device types. Some detailed configurations,
e.g., memory bandwidth, rely on micro-benchmark profiling
or derive from published device specifications. Next, we share
our experiences in implementing the HAL on several popular
DNN accelerators, including NVIDIA GPUs, AMD GPUs
and Graphcore IPU.
ROLLER on NVIDIA CUDA GPUs. An NVIDIA GPU
usually employs a centralized memory architecture. We imple-
ment ROLLER on V100 and K80, two CUDA GPUs with dif-
ferent architectures on the streaming multi-processors (SMs).
Their memory architecture contains global memory, L2 cache,
L1 cache, shared memory, and register. In ROLLER’s HAL,
we abstract them into 3 memory layers: L2 layer for global
memory and L2 cache, L1 layer for only the shared memory,
and the L0 layer for register. We ignore L1 cache because it
shares the space with shared memory and cannot be controlled
by user programs. The memory bandwidths of all levels are
measured by our micro-benchmarks. The transaction length
at the global memory layer is set to 32 Bytes, i.e., 8 float
elements, for both GPUs. For V100 GPUs, the bank number
and the bank length of the shared memory is 32 and 4 Bytes
respectively. For K80 GPUs, the bank length is 8 Bytes. The
shared memory capacities are set as 48KB for both GPUs
(based on deviceQuery).

We implement the TEU on CUDA GPUs as a warp of 32
threads, which is also the basic unit to execute the TensorCore
WMMA instructions. The size of a TEU Group on a HAL
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(e.g., a SM) is set to the warp scheduler number, which is 4
for both GPUs. The SM number is 80 for V100 [21] and 13
for K80. On CUDA GPUs, each thread has a limited register
capacity, e.g., 255 registers for V100. Exceeding this limit
will lead to register spilling, causing significant performance
degradation. This sets a limit to the size of an rTile at register
layer. We notice that the nvcc compiler will implicitly declare
more registers (for loop variables or other purposes). Given
that this behaviour is hard to predict, we reduce the register
limit empirically to only 96 registers for both V100 and K80
per thread to avoid unexpected performance impacts.
ROLLER on AMD ROCm GPUs. We also implement
ROLLER on MI50 [12], AMD’s second-generation Vega series
GPU. MI50 shares a similar memory architecture as V100:
the centralized global memory can be accessed by all compute
units (CUs). Like SMs in NVIDIA GPU, each CU has its own
scratchpad memory, registers, and computation cores. The
data movement of a ROCm [1] kernel program is also similar.
The memory transaction size for the global memory is set as
64 Bytes. The memory bank number is 32 and bank length
is also 4 Bytes. We also implement the TEU as a warp of
threads, which is 64 threads on MI50 GPUs. The maximal
register size is empirically limited to 70 registers per thread.
All other specifications such as the memory bandwidths at
each layer, peak computing throughput, etc., are measured
with our micro-benchmark.
ROLLER on Graphcore IPUs The Graphcore IPU [22]
is a massive parallel MIMD processor with 1216 parallel
processing cores. Distinct from NVIDIA and AMD GPUs,
an IPU employs a distributed memory architecture. There is
only 256KB on-chip local memory attached per core, and no
unified global memory. When the local memory is unable
to hold all the input data, by default, the initial data of a
kernel program is stashed in the on-chip local memory and
evenly distributed across the nodes. Thus, ROLLER’s HAL
for IPUs also abstracts three memory layers: L2 for all the
remote memories across all cores, L2 for the local memory on
each core, and L0 for the register. We take advantage of prior
benchmarking work [22], which has successfully measured
peak memory bandwidth and computation throughput. The
size of the register files per IPU core is not publicly available.
Considering that we have no prediction for behaviours of the
IPU program compiler, we allow each upper-level rTile to
use only 10 registers, which safely guarantee that the tiling
algorithm does not emit invalid tiling configurations.

5 Evaluation

We evaluate ROLLER on both DNN operator benchmarks and
end-to-end models by comparing with state-of-the-art DNN
compilers and frameworks. We first summarize our findings:
1) ROLLER achieves three orders of magnitude speedup on
compilation time, compared to TVM and Ansor. On V100
GPU, the most expensive operator takes 43 seconds, while

Operator Configuration Note
MatMul M=65536,K=2,N=1024 M0
MatMul M=128,K=4032,N=1000 M1
MatMul M=65536,K=1024,N=4096 M2
Conv2D D=(128,128,28,28), K=(128,128,3,3),S=1 C0
Conv2D D=(128,128,58,58), K=(128,128,3,3),S=2 C1
Conv2D D=(128,256,30,30), K=(256,256,3,3),S=2 C2
DepthwiseConv D=(128,84,83,83), K=(84,84,5,5),S=2 D0
DepthwiseConv D=(128,42,83,83), K=(42,42,5,5),S=1 D1
DepthwiseConv D=(128,84,21,21), K=(336,336,1,1),S=1 D2
Element(Relu) I=(128,1008,42,42) E0
Element(Relu) I=(128,256,14,14) E1
Element(Relu) I=(128,1024,14,14) E2
Avgpool D=(128,168,83,83),K=1,S=2,VALID P0
Avgpool D=(128,617,21,21),K=3,S=2,SAME P1
Avgpool D=(128,42,83,83),K=3,S=1,SAME P2
ReduceMean I=(128, 512, 1024), axis=[2] R0
ReduceMean I=(65536, 1024),axis=[1] R1
ReduceMean I=(128, 4032, 11, 11), axis=[2,3] R2

Table 1: A subset of operator configurations in our benchmark.

all other operators take only around 13 seconds to compile.
2) ROLLER matches the state-of-the-art performance of ven-
dor libraries and other compilers on a wide range of opera-
tors. It even outperforms others for more than 50% of opera-
tors. 3) For operators with smaller sizes and irregular shapes,
ROLLER’s results are sub-optimal because of the difficulty
in aligning with the hardware. However, their kernel execu-
tion time is usually small (around or below 1ms). 4) We have
conducted the most extensive evaluations (119 ops in total)
covering different operator types over different accelerators.
Experimental setup. ROLLER is evaluated on four types of
servers equipped with different accelerators. The CUDA GPU
evaluations use two types of servers: an Azure NC24s_v3 VM
equipped with Intel Xeon E5-2690v4 CPUs and 4 NVIDIA
Tesla V100 (16GB) GPUs and an Azure NC24_v1 VM with
24 Intel(R) Xeon(R) CPU E5-2690v3 CPUs and 4 NVIDIA
Tesla K80 GPUs. Both running on Ubuntu 16.04 with CUDA
10.2 and cuDNN 7.6.5. The AMD ROCm GPU evaluations
use a server equipped with Intel Xeon CPU E5-2640 v4 CPU
and 4 AMD Radeon Instinct MI50 (16GB) GPUs, installed
with Ubuntu 18.04 and ROCm 4.0.1 [1]. The IPU evalua-
tions use an Azure ND40s_v3 VM equipped with Intel Xeon
Platinum 8168 CPUs and 16 IPUs with Poplar-sdk 1.0.

We compare ROLLER against other tensor compilers, ven-
dor libraries and DNN frameworks, including TVM [15]
(v0.8) and Ansor [33] (v0.8), two state-of-the-art tensor com-
pilers; cuDNN, cuBLAS, rocBLAS (ROCm GPUs), POPLAR
library (Graphcore IPU), which are vendor libraries; Tensor-
Flow (v1.15), a state-of-the-art DNN framework; TensorFlow-
XLA a state-of-the-art DNN full-model compilers; and Ten-
sorRT (v7.0) (with TensorFlow integration version), a vendor-
specific inference library for NVIDIA GPUs. We validate our
compilation results by comparing them against Ansor’s.
Benchmarks. Our evaluation benchmark uses four typical
DNN models, including ResNet-50 [19] (CNN), LSTM [20]
(RNN), NASNet [36] (a state-of-the-art CNN model obtained
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Figure 10: Operator performance on V100 GPUs (y-axis: average kernel execution time in ms).

by the neural architecture search), and BERT-Large [17]
(transformer-based). We set the default batch size of each
model to 128. From each model, we choose the most-
frequently used operators to construct our operator bench-
mark. It contains 6 classes of operator type with total 119
operator instances with different configurations (7 MatMul
operators, 44 Conv2D operators, 23 DepthwiseConv opera-
tors, 28 element-wise operators, 13 pooling operators, and 4
reduction operators). Table 1 lists a representative subset of
operators as well as their configurations. The last column lists
the corresponding abbreviation of each operator. The full list
of the operator configurations is omitted due to page limit.

5.1 Evaluation on NVIDIA GPUs

This section first evaluates ROLLER’s operator performance,
compilation time, and scalability on large operators by com-
paring against the state-of-the-art tensor compilers and vendor
libraries. We also evaluate the performance of ROLLER on
TensorCore. Finally, we show the end-to-end model perfor-
mance compared to existing DNN compilers and framework.
Operator performance. We first evaluate the performance
of ROLLER generated kernels by comparing against TVM
(i.e., AutoTVM with XGBoost tuning algorithm [16]), Ansor,
cuBLAS (for matrix multiplication operators) and cuDNN
(for convolution operators). Vendor libraries like cuBLAS
and cuDNN are wrapped in TensorFlow to evaluate the per-
formance. For the rest of operators (e.g., element-wise, re-
duce), we use TensorFlow’s built-in kernel implementations.
To amortize the overhead of data feeds/fetches in Tensor-

Flow’s session, we repeat the kernel running for 1,000 times
in each session and calculate the average. We set the tuning
steps for TVM and Ansor to 1,000 for each operator, same as
Ansor’s evaluation setup [33], and report the best results. We
compare both the top-1 and the best from the top-10 kernels
constructed by ROLLER, the latter can tolerate some hidden
performance impacts from device compilers.

Figure 10 plots the average kernel performance for all
the 119 operators in our benchmark, ordered by the oper-
ator type and ID. We plot the large operators (e.g., kernel
time is larger than 5ms) in the top sub-figure in a log-scale
for y-axis, and the other medium and small operators in the
bottom 4 sub-figures 2. First, compared to CUDA libraries
(CudaLib), ROLLER could get comparable performance (i.e.,
within 10% performance) for 81.5% of the total operators,
and can be even faster for 59.7% of them. We observe that the
majority of operators that ROLLER performs worse are convo-
lution operators with 3×3 or larger filters, which are usually
implemented with a more efficient numerical algorithm (e.g.,
Winograd [23]) in cuDNN and hard to be expressed by the
tensor expression. This is the reason Ansor and TVM are also
slower than CudaLib in these cases. Second, compared to
TVM and Ansor, ROLLER could also get comparable perfor-
mance for 72.3% and 80.7% of the total operators respectively.
The rest 27.7% and 19.3% of them are mainly small oper-
ators or with irregular tensor shapes, which are by natural
hard to align with the hardware. However, these operators
usually have relatively short kernel time, e.g., only 1.65ms
and 1.16ms on average. Among 54.6% and 65.5% of the total

2Please find the complete results in our artifact.
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Figure 11: Compilation time for each operator.
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Figure 12: Kernel time for MatMul operator with different
sizes of M in BERT-Large model, K=1024, N=4096.

operators, ROLLER can even produce faster kernels than TVM
and Ansor, respectively. We observe that the majority of these
operators are large and time-consuming ones. As it shows in
the top sub-figure where operators are larger than 5ms (up to
343ms), ROLLER could achieve better performance for most
of these operators, e.g., by 1.85× and 1.27 × speedup over
TVM and Ansor on average.
Compilation time. Given the comparable kernel perfor-
mance, the major advantage of ROLLER is its fast compilation.
Figure 11 compares ROLLER’s compilation time against TVM
and Ansor for all the operators. The operator ID is sorted by
the compilation time for each line. The average operator com-
pilation time for TVM is 0.65 hours and up to 7.89 hours. For
the first 40 operators, which are mainly the element-wise, re-
duction, and pooling operators, TVM’s compilation takes less
than 10 seconds. This is because TVM’s manually-written
code templates for these operators can directly emit code
without searching. However, Ansor generates search spaces
for all the operators. Its compilation time takes 0.66 hours on
average and up to 2.17 hours. In contrast, ROLLER’s top-1
kernel results can be generated in 1 second for most operators
and in 0.43s on average, which is more than three orders of
magnitude faster. The major time is spent on the recursive con-
structing algorithm, which increases slightly with the growth
of operator size, but quickly stabilizes as the recursive depth
(to enlarge the rTiles) is bounded by the limited memory ca-
pacity. To get the optimal kernels from the top-10 candidates,
ROLLER’s average compilation time is only 13.3 seconds.
The major cost comes from the kernel code compilation with
the device compiler and the evaluation on target devices.
Scale-out with operator size. We evaluate the scalability of
ROLLER on larger operators by comparing with both CUDA
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Figure 13: Kernel time for Conv2d operator with different
batch sizes of N, where C=1024, H=14, F=2048, K=1, S=2.
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Figure 14: Compilation time for both MatMul and Conv2d
operator with different batch sizes.

libraries, TVM, and Ansor. We select a MatMul operator from
the BERT model and a Conv2D operator from the ResNet
mode, and scale them by setting different batch sizes. Fig-
ure 12 and Figure 13 show the performance comparisons. For
the MatMul operator, both Ansor and ROLLER have a linear
scalability over the batch sizes and comparable performance
with CudaLib (i.e., cuBLAS). However, TVM’s performance
is relatively non-stable. For example, ROLLER can outperform
TVM by average 11.2× and up to 36.1× for the batch size of
1024. For Conv2D operators, ROLLER can still achieve linear
scalability over the batch size, and get slightly better perfor-
mance than Ansor and TVM (by 1.25 and 1.54× on average).
Note that Anosr is unable to search for a valid kernel for the
batch size over 2048 using its default configurations. TVM
can generate valid kernels, but the performance is scaled sub-
linearly for the larger batch sizes, e.g., ROLLER can achieve
more than 1.9 × speedup for batch sizes greater than 2048.

Finally, Figure 14 compares the compilation time for the
two operators with different batch sizes. The average com-
pilation time of TVM and Ansor is 2.36 (up to 9.55) hours
and 1.19 (up to 3.0) hours respectively. Moreover, their com-
pilation time grows constantly with the growing of batch size.
This is because that they are both based on ML-based search
approach, whose search space usually increases exponentially
with the operator size. In contrast, ROLLER produces the top-
1 kernel in 1 second, and 16 seconds (up to 34 seconds) on
average for the top-10 kernel.
Compile on TensorCore. ROLLER could easily support
hardware tensor ISAs (e.g., TensorCore) by aligning the
rTile shape with the hardware instruction shape. We use the
16×16×16 WMMA instruction in ROLLER. We remove An-
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Figure 15: Matmul kernel time on TensorCore.
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Figure 16: Performance for small operators.

sor in this experiment as it does not support TensorCore to our
best knowledge. We select 4 large MatMul operators that are
friendly to TensorCore in this experiment. Figure 15 shows
the performance comparisons. As it shows, by constructing
from the aligned rTile shape, ROLLER can quickly produce
good kernels on TensorCores, e.g., within a 43% performance
gap to cuBLAS. Note that cuBLAS is highly optimized with
a lot of hand-crafted optimizations on TensorCore. As a com-
parison, TVM fails to generate valid kernels for 3 of the 4 total
operators with the default configurations. We try to increase
the tuning steps from 1,000 to 10,000, it is still unable to find
a legitimated kernel due to its poorly-defined search space.
Small operators and irregular tensor shape. ROLLER opti-
mizes performance for small operators by shrinking the rTile
when there is insufficient parallelism. We demonstrate the per-
formance of this optimization for the two small MatMul opera-
tors. Figure 16 compares the performance of the original rTile
configuration without sufficient parallelism (Roller-O), and
the shrunken rTile configuration (Roller-S) which matches
the SM parallelism. As it shows, shrinking rTile could sig-
nificantly improve performance than the original kernel, e.g.,
by 2.3× on average. However, ROLLER is still slower than
Ansor, e.g., by 50% on average, on small operators, even it
is significantly faster than TVM by 6.6×. For such operators,
we can further leverage search-based approach to fine-tune
the configurations to obtain a better performance.

ROLLER compiles operators with irregular tensor shapes
with two optimizations: i.e., axis fusion and tensor padding
with bound parameter ε. We demonstrate their benefits on a
representative set of irregular convolution operators, as shown
in Figure 17. We compare the performance of ROLLER with-
out any optimizations (Roller-B), with axis fusion (Roller-F),
and further with tensor padding of ε from 0.4 to 1.0 (Roller-
P0.4 and Roller-P1.0). All ROLLER’s performances are the
best one selected from the top-10 candidates. First, with axis
fusion optimization, ROLLER is able to have more rTiles
that aligns with the tensor shapes, which improves the kernel
performance by 1.5× on average. Moreover, with the tensor
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Figure 17: Performance for operators with irregular shapes.
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Figure 18: Memory throughput (DRAM and shared memory)
and compute throughput from our micro-performance model
and real measurement (X-axis: kernel configurations with
different number of threads per block (T) and blocks (B)).

padding optimizations (e.g., at ε of 1.0), ROLLER can further
improve performance than Roller-F by 1.4×. This is mainly
because the number of legitimated kernels is very limited with
smaller ε for irregular shapes. Increasing the ε allows ROLLER
to have chance to select from more candidate kernels.
Micro-performance model. We conduct extensive exper-
iments to validate the micro-performance model, including
global memory throughput, shared memory throughput, and
compute throughput, under different kernel configurations
(i.e., different thread block and grid size). Figure 18 compares
the performance estimated by our micro-performance model
with that measured on real device. As shown, when the config-
uration is not aligned with the parallelism of execution units,
i.e., thread number per block is less than 128 (4 warps), our
model produces a relatively estimation error, especially for
the DRAM throughput. This is also the case when there is
insufficient parallelism (i.e., block number is less than 80).
Thus, we can see our micro-performance model is accurate
only for those shape-aligned configurations (i.e., rTiles), as
they fully exploit hardware efficiency. This also motivates us
to choose only the aligned rTiles, which greatly reduces the
complexity of micro-performance model.
Kernel performance. We further study how close the per-
formance of ROLLER generated kernels can approach the
optimal. Since ROLLER’s data pipeline model can naturally
identify the bottleneck layer, e.g., DRAM, shared memory, or
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Resource utilization 60-70% 70-80% 80-90% 90-100%
Operator # 6 13 22 78
Percentage 5% 11% 18% 66%

Table 2: The distribution of resource utilization at the satu-
rated layer for different kernels.

Baseline MemAlignn EUAlign ShapeAlign BankAlign
1.0x 1.42x 1.88x 1.92x 1.94x

Table 3: Average accumulated performance improvement with
different alignment optimization.

computation, we profile each generated kernel and compare
the corresponding resource utilization at the saturated layer
with the theoretical hardware limit. Table 2 lists the distri-
bution of the resource utilization for the total 119 operators.
The table shows most kernels saturate hardware resources,
e.g., 66% of them utilize more than 90% of the theoretical
limit. For the few under-utilized kernels, especially whose
utilization is less than 80%, our investigation shows that they
are mostly small operators with insufficient parallelisms.

To understand the impact of different alignment rules, we
incrementally turn on each alignment optimization and evalu-
ate its performance improvement. Table 3 shows the average
speedup compared with the baseline (without any optimiza-
tion). For example, EUAlign shows the kernels with the align-
ment on execution units and memory transaction alignment
(MemAlign) can together improve the performance by 1.88x
than the baseline. Bank alignment (BankAlign) has relatively
small improvement because most kernels are already bank
conflict free.
End-to-end model performance. We evaluate the end-to-
end model performance of ROLLER by comparing against Ten-
sorFlow (TF), TensorFlow-XLA (TF-XLA), TensorRT (TF-
TRT), and Ansor, which represent the state-of-the-art DNN
framework, graph-level compiler, vendor-provided DNN en-
gine, and DNN compiler with tensor compilation, respectively.
Note that TensorRT is also the core engine in NVIDIA Tri-
ton inference server [8]. We omit TVM in this experiment
as it usually requires an order of magnitude longer compi-
lation time on tuning end-to-end models than Ansor [33].
ROLLER’s end-to-end model compilation is implemented in
Rammer (i.e., Rammer+Roller) by feeding the generated ker-
nels into it. To create a fair baseline, we manually feed both
the TVM and Ansor generated kernels for the same set of
operators into Rammer, which are denoted as Rammer+TVM
and Rammer+Ansor.

Table 4 lists the model execution time for each model com-
piled or executed by each compiler and framework. Note
that TF-XLA fails to compile the BERT-Large and NASNet
model (out-of-memory). TF-TRT also fails to run the BERT-
Large model due to exceeding the maximum protobuf size
limit (2GB) in its graph loading stage. For Ansor, we set the
total tuning steps as 1,000 multiplied with the number of sub-
graphs for each model. However, Ansor also fails to produce

BERT-Large ResNet NASNet LSTM
TF 5,186 131 1,041 141
TF-XLA OOM 112 OOM 98
TF-TRT N/A 137 883 31
Ansor 46,847 (TVM) 122 927 84
Rammer+TVM 17,730 143 1,168 43
Rammer+Ansor 5466 137 1036 48
Rammer+Roller 4,850 142 1,005 20
Ansor compile-time 30.9h (TVM) 33.4 h 41.8h 11.3 h
Roller compile-time 371s 352s 668s 298s

Table 4: End-to-end model execution time (in milliseconds)
and compilation time on V100 GPUs.

TF(CudaLib) TVM Ansor
Better Performance 82.4% 65.5% 71.4%

Perf. within 5% 82.4% 67.2% 75.6%
Perf. within 10% 83.2% 73.1% 79.0%
Perf. within 50% 99.2% 93.3% 94.1%
Perf. within 90% 100.0% 100.0% 100.0%

Table 5: The percentage of better and comparable performant
operators on NVIDIA K80 GPUs.

a legitimate program for BERT-Large models. Thus, for this
case, we use TVM to compile the model. Note that, the per-
formance of TVM for BERT-Large is about 2.6× slower than
Rammer+TVM, as the default layout of the dense operator in
TVM (i.e., NT) is different from that in Rammer (i.e., NN).
First, for the ResNet and NASNet models, ROLLER can only
achieve comparable and mostly slower performance than TF,
TF-XLA, and TF-TRT (up to 26.7% slower compared to TF-
XLA for ResNet). This major overhead in ROLLER is caused
by the less efficient convolution kernels compared to cuDNN
as explained before. However, for the BERT-Large and LSTM
models, ROLLER can outperform all other frameworks and
compilers, e.g., by 1.07× and 1.55× faster than the state-of-
the-arts, i.e., TF for BERT-Large and TensorRT for LSTM.
This mainly due to ROLLER’s kernel construction favors large
and regular operator shape, which are heavily used in the
BERT-Large model. For both the BERT and LSTM models,
since ROLLER can control to generate resource-efficient ker-
nels by the scaling-up policy, it provides more opportunities
for Rammer to co-schedule parallel kernels on the parallel
SMs on GPUs. They together produce an efficient end-to-end
program, which can even outperform TF-TRT by 1.55× for
LSTM. Among all the implementations, Ansor can also pro-
duce very efficient programs for all the rest 3 models except
for the BERT. However, it requires a long compilation time
(29.3 hours on average). For the NASNet model, it reaches
only 32% of the overall searching progress after tuning for
41.8 hours. In contrast, ROLLER only takes 422s on average
to compile these models. This includes the graph-level op-
timization and the full-model compilation time in Rammer,
which occupies about 41% of the total time on average.

Operator performance on K80 GPUs. We also evaluate
ROLLER on the K80 GPUs. Table 5 shows the percentage of
better or comparable performing operators (e.g., within 10%
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TF(RocLib) TVM Ansor
Better Performance 73.1% 58.8% 70.6%

Perf. within 5% 79.0% 62.2% 72.3%
Perf. within 10% 81.5% 62.2% 73.9%
Perf. within 50% 94.1% 84.0% 86.6%
Perf. within 90% 100% 100% 100%

Table 6: The percentage of better and comparable performant
operators on AMD ROCm MI50 GPUs.
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Figure 19: Operator performance on Graphcore IPU (y-axis
in log-scale).

differences or 1.1× slow down) ROLLER generates for our
operator benchmarks. Compared to CUDA libraries, TVM,
and Ansor, ROLLER produces 82.4%, 65.5% and 71.4% bet-
ter kernels for the whole operator benchmark. The percent-
age is relatively low for TVM mainly because the manual-
crafted element-wise kernel templates in TVM are already
highly-optimized. Finally, the average compilation time for
all operators is 0.65 hours for TVM and 0.95 hours for Ansor
respectively. In contrast, ROLLER’s average compilation time
is only 5.24 milliseconds for top-1 kernel and 12.3 seconds
for top-10 kernel.

5.2 Evaluation on Other Accelerators.

Operator performance on AMD ROCm GPUs. We evalu-
ate ROLLER on AMD ROCm GPUs by comparing it against
ROCm libraries, TVM, and Ansor. Table 6 shows the percent-
age of operators that ROLLER can produce better or compara-
ble performance (e.g., within 5% and 10% differences) in our
operator benchmarks. Compared to the ROCm libraries (e.g.,
rocBlas), 73.1% of the total operators ROLLER can produce
better kernels. This percentage is much higher than that on
CUDA GPUs (59.7% and 54.6% for V100 and K80 GPUs).
This is mainly because the libraries on CUDA GPUs are more
mature than the ROCm GPUs, where ROLLER can help sig-
nificantly. Compared to TVM and Ansor, ROLLER can also
produce 58.8% and 70.6% better kernels. Similar to CUDA
GPUs, the kernels that are slower by more than 10% are
mostly small operator and those with irregular tensor shapes:
the average execution time of these kernels are only 1.69ms
and 1.57ms for TVM and Ansor, respectively. Finally, the
average compilation time for all operators is 0.85 (up to 4.2)
hours for TVM and 0.99 (up to 3.4) hours for Ansor, respec-
tively. In contrast, ROLLER’s average compilation time is 0.24
(up to 0.63) seconds for top-1 kernel and 7.69 (up to 49.0)
seconds for top-10 kernel.

Operator performance on Graphcore IPU. We evaluate
ROLLER on Graphcore IPUs. Due to the limited on-chip
memory capacity, we only evaluate a set of small MatMul and
Conv2D operators with different configurations. Figure 19
shows the average kernel time of each operator in log-scale,
comparing against the Poplar-sdk library (i.e., PopART) pro-
vided by Graphcore and Ansor. Since TVM and Ansor do
not have Graphcore backends, we use a modified version of
Ansor in this experiment. As it shows, ROLLER can generate
faster kernels than PopART for all operators, with an average
of 3.1× and up to 9.2× speedup. Even comparing to Ansor,
ROLLER can still construct comparable or even better kernels
in most of operators, i.e., 2.9% average improvement. Note
that Ansor still requires hours of tuning for each operator,
as the device compiler on IPUs could take up to minutes to
compile a program. However, ROLLER usually produce good
kernels from the top-10 constructed candidates in several min-
utes. This time is mainly bottle-necked by the less-matured
device compiler. It also brings more challenges to adopt the
ML-based tensor compilers on these devices.

6 Discussion and Future Work

Optimization space compared with loop-based compiler.
The abstraction of rTile and data processing pipeline al-
lows ROLLER to construct an optimization space overlapped
with, but different from, existing DNN compilers (e.g., An-
sor) [15, 33, 35]. As mentioned previously, these compilers
view tensor compilation as nested loop optimizations. For
example, Ansor allows only divisible tiling sizes along a ten-
sor dimension to partition a loop axis evenly. This makes
it usually perform worse for tensor shapes with prime di-
mensions. ROLLER instead focuses on maximizing hardware
efficiency from the data-processing-pipeline view, allowing
more aggressive optimizations, e.g., exploring non-divisible
but hardware-aligned tiling sizes with fused adjacent axis
and padded tensor shapes. Driven by our observation that
most DNN operators are memory-bound, ROLLER fundamen-
tally differs from existing DNN compilers by first optimizing
data-tile throughput, i.e., maximizing reuse score rewards
and aligning with hardware features, and then for parallelism.
Such a trade-off inherently leads to fast compilation and good
performance for operators with sufficient parallelism.

Optimization trade-off. ROLLER’s design philosophy is
based on an observation: large and dense operators tend to
be major contributors to the execution time. This leads to
a design trade-off: optimizing data reuse (i.e., maximizing
pipeline throughput) as the primary optimization goal, and
turning other hardware related optimizations into alignment
constraints. Such trade-off results in fast compilation and high
kernel quality for a majority of operators in mainstream work-
loads. For small operators, ROLLER further employs some
adaptive mechanisms to trade-off among different optimiza-
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tion goals, e.g., using a threshold to limit redundant work
(§3.1) when there are insufficient results, employing an adapt-
ing rTile shrinking process to increase parallelism (§3.2),
etc.

Future work. ROLLER currently relies on high level device
compiler, e.g., nvcc, to compile kernel code to executable.
This sometimes introduces undesirable performance impacts
and forces ROLLER to allocate registers conservatively. This
is because the device compiler will implicitly allocate regis-
ters for intermediate values (e.g., loop variables). ROLLER
cannot detect implicit register allocation beforehand, hence it
is difficult to estimate and decide the precise register usage.
One of our future work is to generate assembly (e.g., PTX for
NVIDIA GPUs) code directly to avoid the side effects from
the high level device compiler.

Moreover, although the key hardware information that af-
fects performance, including memory bandwidth, capacity,
and transaction length, is often available in the hardware spec-
ification, there are still some devices (e.g., mobile GPUs)
lacking such information. Another future work is to leverage
some profiling techniques [25] to disclose and quantify those
hardware features.

ROLLER’s HAL assumes hardware contains homogeneous
computing units and symmetric memory accessing. However,
we also observe that some devices have NUMA architecture.
This makes it difficult for the micro-performance model to
estimate rTile performance, as the same tile will perform
differently at different locality under NUMA architecture. We
leave this issue as future work.

Finally, the optimization for sparse kernel may also violate
the assumption of homogeneous workload in a DNN kernel
and make the micro-performance model inaccurate. Some
tiles with a larger degree of sparsity may perform differently
from dense tiles. ROLLER assumes a higher level, sparsity-
aware compiler (e.g., SparTA [34]) will address this issue.

7 Related Work
Most tensor compilers treat DNN operators as nested multi-
level loop computation, which essentially defines a large space
with a combinatorial complexity. TVM [15] inherits the in-
sight from Halide [27] and describes DNN operators as loop
optimization schedule primitives. Later, AutoTVM [16] ex-
tends TVM to apply an ML-method to search for the best con-
figurations from manually written code templates. FlexTen-
sor [35] proposes to automatically explore the space without
manual templates. Ansor [33] further advances such automa-
tion. It generates an even larger search space considering a
hierarchical code structure and adopts an evolution algorithm
to find performant kernels. Compilers like Tiramisu [14],
AKG [32], and Tensor Comprehensions [29] apply polyhedral-
based techniques to loop optimization, which transforms the
loop into an integer programming problem and finds a good

configuration with a solver. All these approaches rely on a
huge search space to provide good kernel, which leads to
long compilation/solving time. ROLLER explores a different
approach to construct rTiles that align with hardware features.

Tensor Processing Primitives (TPPs) [18] define a set of
2D-tensor operators to compose complex operators on high-
dimensional tensors, providing limited expressiveness. In con-
trast, ROLLER does not limit the dimension of tile shape and
can be applied to general tensor expressions. The OpenAI
Triton [28] is a programming framework and compiler for de-
veloping block-based GPU kernels. Triton relies on program-
mers to decide the block size and block scheduling, while this
is the key problem ROLLER addressed by considering both
hardware features and tensor shapes. MLIR [5] and Tensor
IR [10] plan to support block-level (i.e., tile) computation rep-
resentation in their IRs. ROLLER’s rTile abstraction and the
rProgram construction are compatible with these initiatives.

Graph-level DNN compilers like XLA [11], TVM [15],
and Rammer [26] focus on cross-operator optimizations, e.g.,
operator fusion/co-scheduling. ROLLER’s kernel generation is
compatible with these compilers. ROLLER’s rTile abstraction
complements the rTask concept in Rammer [26] as it provides
an efficient way to construct an rTask.

Finally, some works focus on operator-specific optimiza-
tions. CUTLASS [7] is a template for implementing matrix-
multiplication. An analytical model [24] is proposed to find
the best loop-level optimization configuration only for con-
volution operators on multi-core CPUs. And DREW [30]
proposes a new way to optimize Winograd convolution using
data compression [31]. ROLLER’s optimization approach is
general for DNN operators on various devices.

8 Conclusion
ROLLER takes an unconventional approach to deep learning
compiler. Instead of relying on costly machine learning algo-
rithms to find a good solution in a large search space, ROLLER
generates efficient kernels using a recursive construction-
based algorithm that leverages the new rTile abstraction with
much fewer shapes that align with multiple hardware fea-
tures. The constructed program can be evaluated by a micro
performance model, without running on a real device every
time. As a result, ROLLER can compile high-performance
kernels in seconds, even in less mature accelerators. More
importantly, ROLLER offers a unique and significantly more
efficient approach for new AI hardware vendors to build com-
petent vendor-specific DNN libraries, bridging the ecosystem
gap to market leaders and thereby facilitating innovations in
AI accelerators.

Acknowledgments
We thank anonymous reviewers and our shepherd, Prof.Yufei
Ding, for their extensive suggestions.

246    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] AMD ROCm Platform. https://github.com/
RadeonOpenCompute/ROCm.

[2] CUDA Basic Linear Algebra Subroutine library. https:
//docs.nvidia.com/cuda/cublas/index.html.

[3] CUDA NVCC. https://docs.nvidia.com/cuda/
cuda-compiler-driver-nvcc/.

[4] IPU PROGRAMMER’S GUIDE. https://www.
graphcore.ai/docs/ipu-programmers-guide.

[5] MLIR. https://mlir.llvm.org/.

[6] NVIDIA cuDNN. https://developer.nvidia.com/
cudnn.

[7] NVIDIA cutlass. https://github.com/NVIDIA/
cutlass.

[8] NVIDIA TRITON INFERENCE SERVER.
https://developer.nvidia.com/
nvidia-triton-inference-server.

[9] ONNX. https://onnx.ai/.

[10] TensorIR. https://discuss.tvm.apache.org/
t/rfc-tensorir-a-schedulable-ir-for-tvm/
7872.

[11] XLA. https://www.tensorflow.org/xla.

[12] AMD Radeon Instinct™ MI50 Accelerator, accessed
2018 Nov. https://www.amd.com/en/products/
professional-graphics/instinct-mi50.

[13] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: A System for
Large-Scale Machine Learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16), pages 265–283, GA, 2016. USENIX Associ-
ation.

[14] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane,
Emanuele Del Sozzo, Abdurrahman Akkas, Yunming
Zhang, Patricia Suriana, Shoaib Kamil, and Saman Ama-
rasinghe. Tiramisu: A polyhedral compiler for express-
ing fast and portable code. In Proceedings of the 2019
IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO 2019, page 193–205. IEEE
Press, 2019.

[15] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An automated end-
to-end optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, Carlsbad,
CA, 2018. USENIX Association.

[16] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. Learning to optimize tensor programs.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 3389–
3400. Curran Associates, Inc., 2018.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

[18] Evangelos Georganas, Dhiraj D. Kalamkar, Sasikanth
Avancha, Menachem Adelman, Cristina Anderson,
Alexander Breuer, Narendra Chaudhary, Abhisek Kundu,
Vasimuddin Md, Sanchit Misra, Ramanarayan Mohanty,
Hans Pabst, Barukh Ziv, and Alexander Heinecke. Ten-
sor processing primitives: A programming abstraction
for efficiency and portability in deep learning workloads.
CoRR, abs/2104.05755, 2021.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long
short-term memory. Neural Comput., 9(8):1735–1780,
November 1997.

[21] Zhe Jia, Marco Maggioni, Benjamin Staiger, and
Daniele P Scarpazza. Dissecting the nvidia volta gpu
architecture via microbenchmarking. arXiv preprint
arXiv:1804.06826, 2018.

[22] Zhe Jia, Blake Tillman, Marco Maggioni, and
Daniele Paolo Scarpazza. Dissecting the graphcore ipu
architecture via microbenchmarking. arXiv preprint
arXiv:1912.03413, 2019.

[23] Andrew Lavin and Scott Gray. Fast algorithms for con-
volutional neural networks. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 4013–4021, 2016.

[24] Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas
Rountev, and P. Sadayappan. Analytical characterization

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    247

https://github.com/RadeonOpenCompute/ROCm
https://github.com/RadeonOpenCompute/ROCm
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
https://www.graphcore.ai/docs/ipu-programmers-guide
https://www.graphcore.ai/docs/ipu-programmers-guide
https://mlir.llvm.org/
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://onnx.ai/
https://discuss.tvm.apache.org/t/rfc-tensorir-a-schedulable-ir-for-tvm/7872
https://discuss.tvm.apache.org/t/rfc-tensorir-a-schedulable-ir-for-tvm/7872
https://discuss.tvm.apache.org/t/rfc-tensorir-a-schedulable-ir-for-tvm/7872
https://www.tensorflow.org/xla
https://www.amd.com/en/products/professional-graphics/instinct-mi50
https://www.amd.com/en/products/professional-graphics/instinct-mi50


and design space exploration for optimization of cnns. In
Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2021, page 928–942,
New York, NY, USA, 2021. Association for Computing
Machinery.

[25] Rendong Liang, Ting Cao, Jicheng Wen, Manni Wang,
Yang Wang, Jianhua Zou, and Yunxin Liu. Romou:
Rapidly generate high-performance tensor kernels for
mobile gpus. In The 28th Annual International Confer-
ence On Mobile Computing And Networking (MobiCom
2022). ACM, February 2022.

[26] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 881–897.
USENIX Association, November 2020.

[27] Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: A language and compiler for optimiz-
ing parallelism, locality, and recomputation in image
processing pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’13, pages 519–530,
New York, NY, USA, 2013. ACM.

[28] Philippe Tillet, H. T. Kung, and David Cox. Triton: An
Intermediate Language and Compiler for Tiled Neural
Network Computations, page 10–19. Association for
Computing Machinery, New York, NY, USA, 2019.

[29] Nicolas Vasilache, Oleksandr Zinenko, Theodoros
Theodoridis, Priya Goyal, Zachary DeVito, William S.
Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. CoRR,
abs/1802.04730, 2018.

[30] Ruofan Wu, Feng Zhang, Jiawei Guan, Zhen Zheng,
Xiaoyong Du, and Xipeng Shen. Drew: Efficient wino-
grad cnn inference with deep reuse. In Proceedings
of the ACM Web Conference 2022, WWW ’22, page
1807–1816, New York, NY, USA, 2022. Association for
Computing Machinery.

[31] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and
Xiaoyong Du. Poclib: A high-performance framework
for enabling near orthogonal processing on compression.
IEEE Transactions on Parallel and Distributed Systems,
33(2):459–475, 2022.

[32] Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei
Zhang, Xiong Gao, Bin Cheng, Chen Wu, Yun Cheng,
Zheng Li, Peng Di, Kun Zhang, and Xuefeng Jin. Akg:
Automatic kernel generation for neural processing units
using polyhedral transformations. In Proceedings of the
42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, PLDI
2021, page 1233–1248, New York, NY, USA, 2021. As-
sociation for Computing Machinery.

[33] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and
Ion Stoica. Ansor: Generating high-performance tensor
programs for deep learning. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 863–879. USENIX Association,
November 2020.

[34] Ningxin Zheng, Bin Lin, Quanlu Zhang, Lingxiao Ma,
Yuqing Yang, Fan Yang, Yang Wang, Mao Yang, and
Lidong Zhou. Deep-learning model sparsity via tensor-
with-sparsity-attribute. In Proceedings of the 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI’22), 2022.

[35] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and
Kaiwen Sheng. Flextensor: An automatic schedule ex-
ploration and optimization framework for tensor com-
putation on heterogeneous system. pages 859–873, 03
2020.

[36] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V Le. Learning transferable architectures for
scalable image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 8697–8710, 2018.

248    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association


	Introduction
	Motivation and Key Observations
	System Design
	Tensor Expression and rTile
	Tensor Program Construction
	Efficient Evaluation of an rProgram

	Implementation
	Evaluation
	Evaluation on NVIDIA GPUs
	Evaluation on Other Accelerators.

	Discussion and Future Work
	Related Work
	Conclusion

